

# Dival SQD

Medium - Low Pressure Gas Regulator







## **TECHNICAL BROCHURE**

#### Pietro Fiorentini S.p.A.

Via E.Fermi, 8/10 | 36057 Arcugnano, Italy | +39 0444 968 511 sales@fiorentini.com

The data are not binding. We reserve the right to make changes without prior notice.

sqd\_technicalbrochure\_ENG\_revB

www.fiorentini.com



## Who we are

We are a global organization specialized in designing and manufacturing technologically advanced solutions for natural gas treatment, transmission and distribution systems.

We are the ideal partner for operators in the Oil & Gas sector, with a business offer that spans the whole natural gas chain.

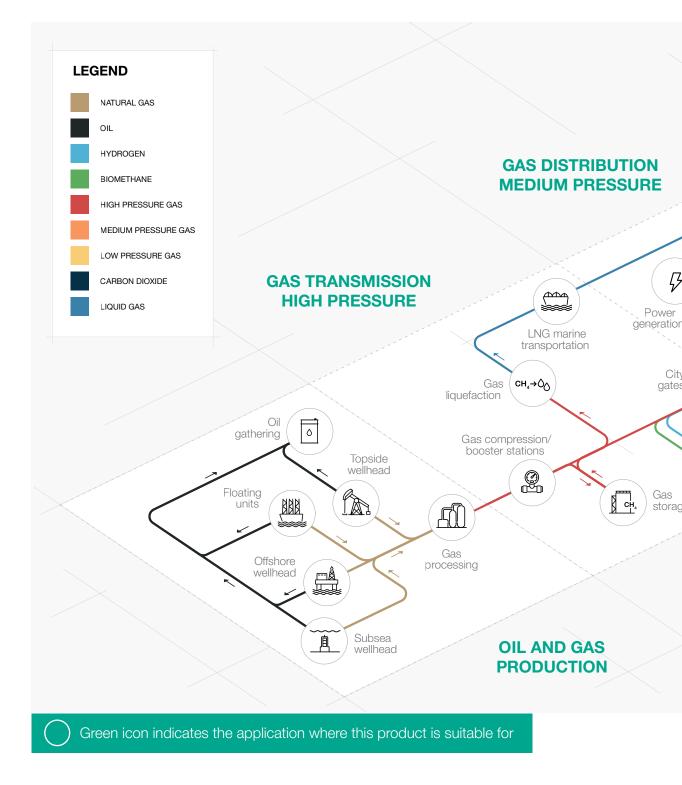
We are in constant evolution to meet our customers' highest expectations in terms of quality and reliability.

Our aim is to be a step ahead of the competition, with customized technologies and an after-sale service program undertaken with the highest level of professionalism.



## Pietro Fiorentini advantages




Localised technical support

Experience since 1940



We operate in over 100 countries

## **Area of Application**





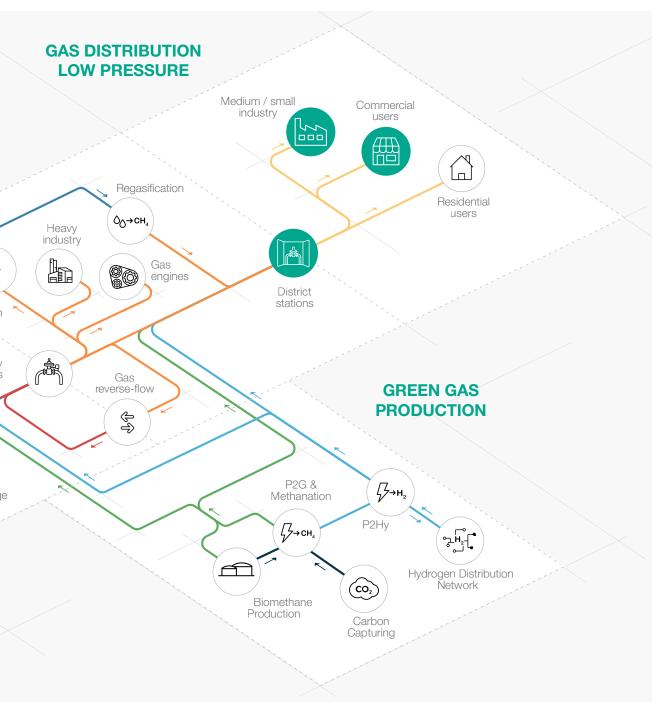



Figure 1 Area of Application Map

# Introduction

The **Dival SQD** by Pietro Fiorentini is a **lever-operated** gas pressure regulator controlled by a diaphragm and contrasting regulated spring action.

Mainly used for medium and low pressure natural gas distribution networks, as well as commercial and industrial applications.

It should to be used with previously filtered non-corrosive gases.

According to the European Standard EN 334, it is classified as Fail Open.

The Dival SQD are Hydrogen Ready for NG-H2 blending.

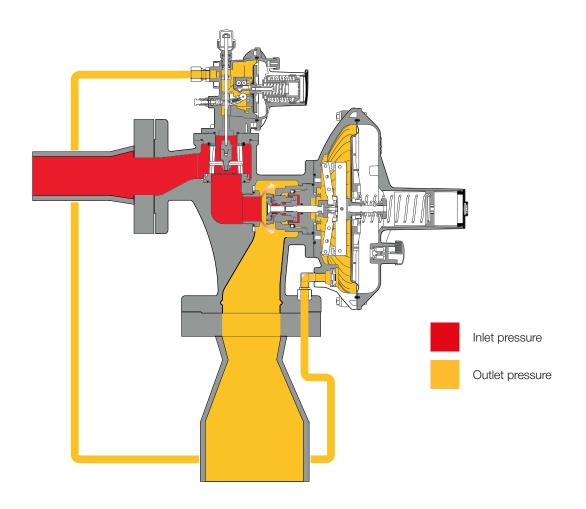



Figure 2 Dival SQD Standard version



## Features and Calibration ranges

The **Dival SQD** is a **lever-operated** device for medium and low pressure with a unique **dynamic balancing system** which ensures an **outstanding turndown ratio** combined with an extremely **accurate outlet pressure control.** 

A balanced pressure regulator it is a pressure regulator where delivery pressure accuracy is not affected by the fluctuation of the inlet pressure and flow during its operation. Therefore, a balanced pressure regulator can have a single orifice for all pressure and flow operating conditions.

Its innovative concept is represented by its **unique valve body geometry**, thus allowing to deliver a regulator which incorporate both **high capacity** and **low differential pressure drop on cartridge's filter**. The Dival SQD, regulator is classified according to European standard EN 334, as Differential Strength (DS) pressure regulator for versions SQD2 - SQD6, and Integral Strength (IS) for version SQD1.

This regulator is suitable for use with previously filtered, non-corrosive gases and distribution networks as well as high load industrial applications. Therefore, it is particularly suitable for ON/OFF burners applications and in any industrial processes where sudden changes in the gas demand are foreseen.

It is a **truly top entry design** which allows an **easy maintenance** of parts directly in the field **without removing the body from the pipework.** 

Set point adjustement of the regulator is operated via a spring located in the top chamber.

It allows remarkable savings in the installation assembly, in terms of development fewer connection pipes, bends, flanges and **less man-hours needed for assembly**.

This construction concept allows to have **reduced footprint district station** compared to the conventional one.

#### **Dival SQD** competitive advantages



Compact and simple design

High accuracy



High turn-down ratio



Fail Open plug and seat regulator



Built-in replaceable cartridge filter



#### **Features**



Top Entry



Easy maintenance



**H**, Ø

In-build accessories

ð

Balanced type

Biomethane compatible and 20% Hydrogen blending compatible. Higher blending available on request

| Features                                                        | Values                                                                                                                                   |  |  |  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Design pressure* (PS <sup>1</sup> / DP <sup>2</sup> )           | up to 0.6 MPa<br>up to 6 barg                                                                                                            |  |  |  |
| Ambient temperature* (TS1)**                                    | from -20 °C to +60 °C<br>from -4 °F to +140 °F                                                                                           |  |  |  |
| Inlet gas temperature*,***                                      | from -20 °C to +60 °C<br>from -4 °F to +140 °F                                                                                           |  |  |  |
| Inlet pressure (MAOP / p <sub>umax</sub> <sup>1</sup> )         | from (Pd + 0.01) MPa to 0.6 MPa<br>from (Pd + 0.1) bar to 6 barg                                                                         |  |  |  |
| Range of downstream pressure (Wd <sup>1</sup> )                 | <ul> <li>SQD1 from 1.3 to 30 kPa<br/>SQD2-6 from 1 to 30 kPa</li> <li>SQD1 from 13 to 300 mbar<br/>SQD2-6 from 10 to 300 mbar</li> </ul> |  |  |  |
| Available accessories                                           | LA slam shut, relief valve                                                                                                               |  |  |  |
| Minimum operating differential pressure $(\Delta p_{min}^{-1})$ | 0.01 MPa<br>0.1 barg                                                                                                                     |  |  |  |
| Accuracy class (AC1)                                            | up to 10   up to 1% absolute<br>(depending on working conditions)                                                                        |  |  |  |
| Lock-up pressure class (SG <sup>1</sup> )                       | up to 20 (depending on version and set point)                                                                                            |  |  |  |
| Nominal size (DN <sup>1,2</sup> )                               | SQD1 in and out DN 40   1"1/2<br>SQD2 in and out DN 50   2"<br>SQD6 in DN 50   2" and DN 80   3" out                                     |  |  |  |
| Connections                                                     | Flanged: Class 150 RF according to ASME B16.5 and ASME<br>B16.42<br>PN16/25 according to ISO 7005-1 and ISO 7005-2                       |  |  |  |

(°) according to ISO 23555-1 standard (°) NOTE: Different functional features and/or extended temperature ranges may be available on request. Stated inlet gas temperature range is the maximum for which the equipment's full performance, including accuracy is guaranteed. Product may have a different pressure or temperature ranges according to the version and/or installed accessories.

Table 1 Features



## Materials and Approvals

| Part                                                                                                                               | Material                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|
| Body                                                                                                                               | Cast iron GS 400 – 18 ISO 1083 |  |  |
| Cover                                                                                                                              | Alluminium                     |  |  |
| Seat                                                                                                                               | Brass                          |  |  |
| Diaphragm                                                                                                                          | Fabric finish rubber           |  |  |
| O-ring                                                                                                                             | Nitrile rubber                 |  |  |
| NOTE: The materials indicated above refer to the standard models. Different materials can be provided according to specific needs. |                                |  |  |

 Table 2
 Materials

#### **Construction Standards and Approvals**

The **Dival SQD** regulators are designed according to the European standard EN 334. The regulators react in opening (Fail Open) according to EN 334.

The product are certified according to European Directive 2014/68/EU (PED). Leakage class: bubble tight, better than class VIII according to ANSI/FCI 70-3.



# Springs ranges and control heads

| Control heads pressure ranges |                      |                      |                          |  |  |
|-------------------------------|----------------------|----------------------|--------------------------|--|--|
|                               | Control head<br>BP   | Control head<br>MP   | Spring Table<br>web link |  |  |
| Model                         | kPa<br>mbar          | kPa<br>mbar          |                          |  |  |
| Dival SQD1                    | 1.3 ÷ 10<br>13 ÷ 100 | 10 ÷ 30<br>100 ÷ 300 | <u>TT 1500</u>           |  |  |
| Dival SQD2                    | 10 ÷ 30<br>100 ÷ 300 | -                    | <u>TT 1500</u>           |  |  |
| Dival SQD6                    | 10 ÷ 30<br>100 ÷ 300 | -                    | <u>TT 1500</u>           |  |  |

Table 3 Settings table

General link to the calibration tables: **PRESS HERE** or use the QR code:





# Maximum allowable operating pressure

#### **Dival SQD1**

| Design pressure (p <sub>s</sub> according to EN334) |      |      |           |      |  |
|-----------------------------------------------------|------|------|-----------|------|--|
| Version                                             | Body |      | Slam shut |      |  |
| version                                             | MPa  | barg | MPa       | barg |  |
| Cast Iron Body 1" 1/2 x 1" 1/2                      | 0.60 | 6    | 2.00      | 20   |  |

Table 4 Design pressure of body and slam shut

| Design pressure (p <sub>s</sub> according to EN334) |       |      |      |       |  |
|-----------------------------------------------------|-------|------|------|-------|--|
|                                                     |       |      |      |       |  |
| Parts                                               | BP MP |      |      |       |  |
|                                                     | MPa   | barg | MPa  | barg  |  |
| Cover                                               | 2.00  | 20   | 2.00 | 20    |  |
| Diaphragm                                           | 0.03  | 0.3  | 0.06 | 0.6   |  |
| Max Diaphragm Δp                                    | 0.02  | 0.2  | 0.03 | 0.399 |  |

 Table 5 Design pressure of control heads

| MAOP Maxir                         | MAOP Maximum Allowable Operating Pressure (p <sub>umax</sub> according to EN334) |              |      |      |      |  |
|------------------------------------|----------------------------------------------------------------------------------|--------------|------|------|------|--|
|                                    |                                                                                  | Control head |      |      |      |  |
| Version                            |                                                                                  | BP           |      | MP   |      |  |
|                                    |                                                                                  | MPa          | barg | MPa  | barg |  |
| WITH /<br>WITHOUT<br>CE<br>MARKING | All versions                                                                     | 0.60         | 6    | 0.60 | 6    |  |

 Table 6 MAOP Maximum Allowable Operating Pressure with/without CE marking

| 22    |   |
|-------|---|
| <br>  |   |
|       |   |
|       |   |
| <br>_ | _ |
|       |   |
|       |   |
| <br>  |   |
|       |   |
| <br>_ |   |
|       |   |
|       |   |
| <br>  |   |
| 88.   |   |
|       |   |
|       |   |
|       |   |
|       |   |

## Dival SQD2 and SQD6

| Design pressure (p <sub>s</sub> according to EN334) |      |      |           |      |  |  |
|-----------------------------------------------------|------|------|-----------|------|--|--|
| Version                                             | Body |      | Slam shut |      |  |  |
| Version                                             | MPa  | barg | MPa       | barg |  |  |
| Cast Iron Body 2"x2"                                | 0.60 | 6    | 2.00      | 20   |  |  |

Table 7 Design pressure of body and slam shut

| Design pressure (p <sub>s</sub> according to EN334) |              |       |  |  |
|-----------------------------------------------------|--------------|-------|--|--|
|                                                     | Control head |       |  |  |
| Parts                                               | BP           |       |  |  |
|                                                     | MPa          | barg  |  |  |
| Cover                                               | 0.05         | 0.5   |  |  |
| Diaphragm                                           | 0.06         | 0.6   |  |  |
| Max Diaphragm Δp                                    | 0.03         | 0.399 |  |  |

 Table 8 Design pressure of control heads

| MAOP Maximum Allowable Operating Pressure (p <sub>umax</sub> according to EN334) |              |        |         |      |      |
|----------------------------------------------------------------------------------|--------------|--------|---------|------|------|
|                                                                                  |              | Contro | ol head | Body |      |
|                                                                                  | Version      | BP     |         |      |      |
|                                                                                  |              | MPa    | barg    | MPa  | barg |
| WITH /<br>WITHOUT<br>CE<br>MARKING                                               | All versions | 0.05   | 0.5     | 0.60 | 6    |

Table 9 MAOP Maximum Allowable Operating Pressure with/without CE marking



## Accessories

#### For the pressure regulators:

- Cartridge filter
- Slam shut

#### Cartridge Filter

The regulators Dival SQD are designed with built-in high capacity cartridge filter with low pressure drop. The cartridge has 5 microns filtration efficiency.

For Dival SQD1-2 models, the filter body is integral to the pressure regulator, allowing considerable advantages in terms of size and installation. For the Dival SQD6 model the filter is connected with a special flanged coupling.

All filters are characterized by a great accessibility to the filtering cartridge which means easy cartridge replacement without the need to disassemble the body of the filter from the regulator.

| Coupling Filter / Regulator Model |                       |  |  |
|-----------------------------------|-----------------------|--|--|
| Regulator                         | Size filter cartridge |  |  |
| Dival SQD1                        | G. 0.5                |  |  |
| Dival SQD2                        | G. 1                  |  |  |
| Dival SQD6                        | G. 2                  |  |  |

 Table 10
 Filter's cartridge size table

#### Slam Shut LA

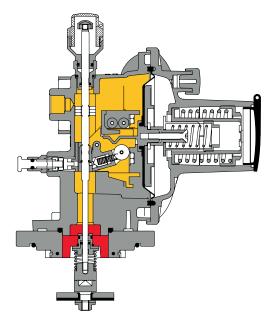
The Dival SQD pressure regulator offers the possibility of installing an **incorporated LA slam shut valve** and this can be done either during the manufacturing process or be retrofited in the field.

LA is available for all sizes

**Retrofitting can be done without modifying** the pressure regulator assembly. With the built-in slam shut, the Cg valve coefficients is 5% lower than the corresponding version without.

The main characteristics of this device are:




Overpressure Shut-Off

Underpressure Shut-Off

Internal by-pass

Push button for tripping test





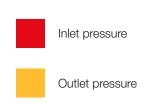



Figure 3 Dival SQD with LA



| Pressure switch types and ranges |       |           |          |            |                 |         |        |
|----------------------------------|-------|-----------|----------|------------|-----------------|---------|--------|
|                                  | Medel | Range Wh  |          | e Wh       | Spring Table    |         |        |
| SSV Type                         | Model | Operation | КРа      | mbarg      | web link        |         |        |
| LA                               | BP    | OPSO      | 3 - 18   | 30 - 180   | TT 00014        |         |        |
| LA                               |       | BP        |          |            | UPSO            | 0.6 - 6 | 6 - 60 |
| LA                               | MP    | OPSO      | 14 - 45  | 140 - 450  | TT 00014        |         |        |
| LA                               |       | UPSO      | 1 - 24   | 10 - 240   | <u>TT 00214</u> |         |        |
|                                  |       | OPSO      | 25 - 550 | 250 - 5500 | TT 00014        |         |        |
| LA                               | TR    | UPSO      | 10 - 350 | 100 - 3500 | <u>TT 00214</u> |         |        |

Table 11 Settings table

|     |    |    |    | ×. |    |
|-----|----|----|----|----|----|
| - 5 |    | ÷. |    | F  |    |
| _   | -  | -  | -  | -  | _  |
|     |    |    |    |    |    |
|     |    |    |    |    |    |
|     |    |    |    | ÷  |    |
| - 6 | Ξ. | Ξ. | Ξ. | E  | Ξ. |
|     |    |    |    |    |    |
|     |    |    |    |    |    |
|     |    |    |    |    |    |
|     |    |    |    |    |    |
|     |    | ī. |    | Ē  |    |
| _   | _  | _  | _  | _  | _  |
|     | 2  | 2  | а. | 5  |    |
|     |    |    |    |    |    |
|     |    |    |    |    |    |
|     |    |    |    |    |    |
|     |    |    |    |    |    |

## Weights and Dimensions

#### **Dival SQD1**

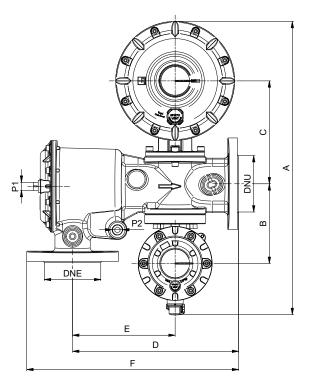



Figure 4 Dival SQD1 dimensions

| Weights and Dimensions              |                                                    |        |
|-------------------------------------|----------------------------------------------------|--------|
| (for other connections please conta | act your closest Pietro Fiorentini representative) |        |
|                                     | [mm]                                               | inches |
| A                                   | 460                                                | 18.1"  |
| В                                   | 124.5                                              | 4.9"   |
| С                                   | 160.5                                              | 6.3"   |
| D                                   | 259                                                | 10.2"  |
| E                                   | 160                                                | 6.3"   |
| F                                   | 330.5                                              | 13.01" |
| G                                   | 195.5                                              | 7.7"   |
| Н                                   | 124                                                | 4.9"   |
| 1                                   | 114                                                | 4.5"   |
| DNE                                 | 1"*                                                | 1/2    |
| DNU                                 | 1"                                                 | 1/2    |
|                                     |                                                    |        |
| Weight                              | Kg                                                 | lbs    |
|                                     | 12.5                                               | 28     |

Σ

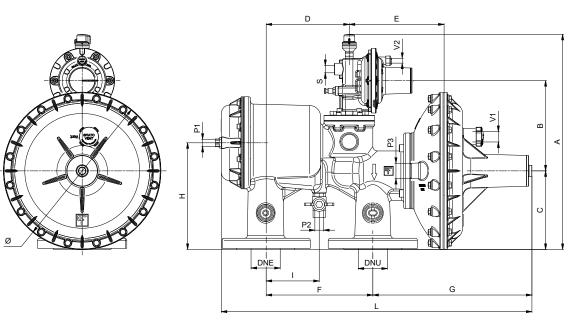
н

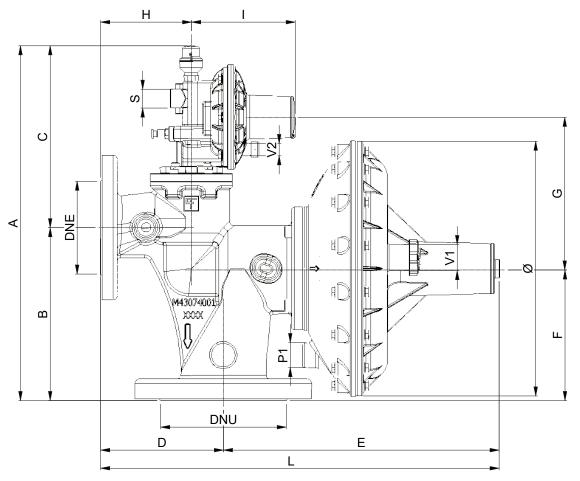
G

 Table 12 Weights and dimensions



## **Dival SQD2**





Figure 5 Dival SQD2 dimensions

|        | [mm]  | inches |
|--------|-------|--------|
| A      | 384   | 15.1"  |
| В      | 161   | 6.3"   |
| С      | 140   | 5.5"   |
| D      | 149   | 5.9"   |
| E      | 169   | 6.7"   |
| F      | 191   | 7.52"  |
| G      | 283.5 | 11.2"  |
| Н      | 190   | 7.5"   |
|        | 95.5  | 3.8"   |
| L      | 553.5 | 21.8"  |
| Ø      | 280   | 11.0"  |
| DNE    | 2     | 11     |
| DNU    | 2     | н      |
|        |       |        |
| Weight | Kg    | lbs    |
|        | 20.34 | 45     |

Table 13 Weights and dimensions



#### **Dival SQD6**





| Weights and Dimensions             | act your closest Pietro Fiorentini representative) |        |
|------------------------------------|----------------------------------------------------|--------|
| (for other connections please conn |                                                    | inches |
| А                                  | 390                                                | 15.4"  |
| В                                  | 190                                                | 7.5"   |
| С                                  | 200                                                | 7.9"   |
| D                                  | 135                                                | 5.3"   |
| E                                  | 303                                                | 11.9"  |
| F                                  | 143.5                                              | 5.65"  |
| G                                  | 168                                                | 6.6"   |
| Н                                  | 100                                                | 3.9"   |
| 1                                  | 114                                                | 4.5"   |
| L                                  | 438                                                | 17.2"  |
| Ø                                  | 280                                                | 11.0"  |
| DNE                                | 2                                                  | н      |
| DNU                                | 3                                                  | 1      |
|                                    |                                                    |        |
| Weight                             | Kg                                                 | lbs    |
|                                    | 17.75                                              | 39.2   |

 Table 14 Weights and dimensions



#### Dival SQD6 + filter

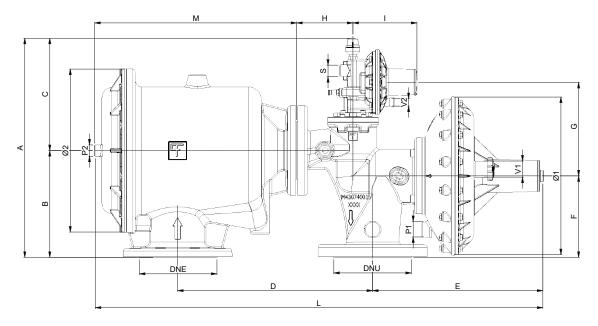



Figure 7 Dival SQD6 + filter dimensions

|        | [mm]  | inches |
|--------|-------|--------|
| A      |       |        |
| 4      | 390   | 15.4"  |
| 3      | 190   | 7.5"   |
| C      | 200   | 7.9"   |
| D      | 349   | 13.7"  |
| Ē      | 303   | 11.9"  |
| F      | 143.5 | 5.65"  |
| G      | 168   | 6.6"   |
| Η      | 100   | 3.9"   |
|        | 114   | 4.5"   |
| _      | 800   | 31.5"  |
| Μ      | 361.5 | 14.2"  |
| 91     | 280   | 11.0"  |
| ə2     | 290   | 11.4"  |
| DNE    | 3     | н      |
| DNU    | 3     | 11     |
|        |       |        |
| Weight | Kg    | lbs    |
|        | 43    | 95     |

Table 15 Weights and dimensions

# Sizing and Cg

In general, the choice of a regulator is made based on the calculation of the flow rate determined by the use of formulae using the flow rate coefficients (Cg) and the form factor (K1) as indicated by the EN 334 standard. Sizing is available through the on-line Pietro Fiorentini sizing program.

| Flow rate coefficient |            |            |            |  |  |  |  |  |  |  |
|-----------------------|------------|------------|------------|--|--|--|--|--|--|--|
| Nominal size          | Dival SQD1 | Dival SQD2 | Dival SQD6 |  |  |  |  |  |  |  |
| Cg                    | 213        | 396        | 930        |  |  |  |  |  |  |  |
| K1                    | 95         | 98         | 98         |  |  |  |  |  |  |  |

Table 16 Flow rate coefficient

For sizing **PRESS HERE** or use the QR code:



**Note**: In case you do not have the proper credentials to access, feel free to contact your closest Pietro Fiorentini representative.

In general the on-line sizing considers multiple variables as the regulator is installed in a system, enabling a better and multiperspective approach to the sizing.

For different gases, and for natural gas with a different relative density other than 0.61 (compared to air), the correction coefficients from the following formula shall be applied.

$$F_{c} = \sqrt{\frac{175.8}{S \times (273.16 + T)}}$$

S = relative density (refer to Table 17) T = gas temperature (  $^{\circ}C$  )

$$F_{c} = \sqrt{\frac{316.44}{S \times (459.67 + T)}}$$

 $\label{eq:stability} \begin{array}{l} S = \mbox{relative density (refer to Table 17)} \\ T = \mbox{gas temperature ( }^{\circ}\mbox{F} \mbox{)} \end{array}$ 



| Correction Factor Fc |                    |                      |  |  |  |  |  |  |  |  |
|----------------------|--------------------|----------------------|--|--|--|--|--|--|--|--|
| Gas Type             | Relative Density S | Correction Factor Fc |  |  |  |  |  |  |  |  |
| Air                  | 1.00               | 0.78                 |  |  |  |  |  |  |  |  |
| Propane              | 1.53               | 0.63                 |  |  |  |  |  |  |  |  |
| Butane               | 2.00               | 0.55                 |  |  |  |  |  |  |  |  |
| Nitrogen             | 0.97               | 0.79                 |  |  |  |  |  |  |  |  |
| Oxygen               | 1.14               | 0.73                 |  |  |  |  |  |  |  |  |
| Carbon Dioxide       | 1.52               | 0.63                 |  |  |  |  |  |  |  |  |
|                      |                    |                      |  |  |  |  |  |  |  |  |

Note: the table shows the Fc correction factors valid for Gas, calculated at a temperature of 15°C and at the declared relative density.

Nm<sup>3</sup>/h reference conditions:

Stm<sup>3</sup>/h reference conditions:

T= 0 °C; P= 1 barg | T= 32 °F; P= 14.5 psig

T= 15 °C; P= 1 barg | T= 59 °F; P= 14.5 psig

 Table 17 Correction Factor Fc

| <br>OW | rate | con | versior |   |
|--------|------|-----|---------|---|
|        | - uu |     |         | - |

 $Stm^{3}/h \ge 0.94795 = Nm^{3}/h$ 

 Table 18
 Flow rate conversion

#### CAUTION:

In order to get optimal performance, to avoid premature wear on the regulators components, and to limit noise emissions, it is recommended to check the gas speed and its compliance with local practice and regulations. The gas speed at the outlet flange of the regulator which be calculated by the following formula:

$$V = 345.92 \text{ x} - \frac{Q}{DN^2} \text{ x} - \frac{1 - 0.002 \text{ x Pd}}{1 + Pd}$$

V = gas speed in m/s Q = gas flow rate in Stm<sup>3</sup>/h DN = nominal size of regular in mm Pd = outlet pressure in barg  $V = 0.0498 \times \frac{Q}{DN^2} \times \frac{14.504 - 0.002 \times Pd}{14.504 + Pd}$ 

V = gas speed in ft/s Q = gas flow rate in Scfh DN = nominal size of regular in inches Pd = outlet pressure in psi

| _   | _  | _  | _   | _  | _  |
|-----|----|----|-----|----|----|
|     |    |    |     |    |    |
|     |    |    |     |    |    |
|     |    | ÷. |     |    |    |
| - 5 | а. | ÷. | Ξ.  | F  | Ξ. |
|     |    |    |     |    |    |
|     |    |    |     |    |    |
|     |    |    |     | ×. |    |
|     |    |    | ÷., | -  | _  |
|     |    |    |     |    |    |
|     |    |    |     |    |    |
| _   | _  | _  | _   | _  | _  |
|     |    |    |     |    |    |
|     |    |    |     |    |    |
|     |    |    |     |    |    |
| - 2 | Ξ. | 2  | Ξ.  | 2  | Ξ. |
|     |    |    |     | -  |    |

## Flow capacity tables

#### Dival SQD1 BP - DN 1"1/2 [40 mm]

From 2 kPa [20 mbarg] to 10 kPa [100 mbarg]

|               |         |                     | Outlet pressure |           |                    |        |                  |        |          |                    |       |  |  |
|---------------|---------|---------------------|-----------------|-----------|--------------------|--------|------------------|--------|----------|--------------------|-------|--|--|
| iniet pi      | ressure | 2 kPa / 20 mbarg 2. |                 | 2.5 kPa / | 2.5 kPa / 25 mbarg |        | 5 kPa / 50 mbarg |        | 75 mbarg | 10 kPa / 100 mbarg |       |  |  |
| MPa           | barg    | Stm³/h              | Scfh            | Stm³/h    | Scfh               | Stm³/h | Scfh             | Stm³/h | Scfh     | Stm³/h             | Scfh  |  |  |
| 0.05          | 0.5     | 79                  | 2800            | 82        | 2900               | 80     | 2900             | 88     | 3200     | 96                 | 3400  |  |  |
| 0.10          | 1.0     | 185                 | 6600            | 185       | 6600               | 150    | 5300             | 160    | 5700     | 171                | 6100  |  |  |
| 0.20          | 2.0     | 130                 | 4600            | 191       | 6800               | 323    | 11500            | 321    | 11400    | 319                | 11300 |  |  |
| 0.30          | 3.0     | 144                 | 5100            | 187       | 6700               | 319    | 11300            | 376    | 13300    | 433                | 15300 |  |  |
| 0.40          | 4.0     | 162                 | 5800            | 175       | 6200               | 274    | 9700             | 336    | 11900    | 399                | 14100 |  |  |
| 0.50          | 5.0     | 162                 | 5800            | 175       | 6200               | 274    | 9700             | 336    | 11900    | 399                | 14100 |  |  |
| 0.60          | 6.0     | 164                 | 5800            | 166       | 5900               | 256    | 9100             | 317    | 11200    | 378                | 13400 |  |  |
| $Cg = 2^{-1}$ | 13 K1=  | 95                  |                 |           |                    | -      | ·                | •      |          | •                  |       |  |  |

**Dival SQD1 BP** - (accuracy 10% : AC10 according to FN334)

Table 19 Dival SQD1 BP flow rate with outlet pressure from 2 kPa [20 mbarg] to 10 kPa [100 mbarg]

#### **Dival SQD1 MP - DN 1"1/2 [40 mm]** From 11 kPa [110 mbarg] to 30 kPa [300 mbarg]

| Dival S  | Dival SQD1 MP - (accuracy 10% ; AC10 according to EN334) |                     |          |            |          |                    |       |                    |       |                    |       |  |  |  |
|----------|----------------------------------------------------------|---------------------|----------|------------|----------|--------------------|-------|--------------------|-------|--------------------|-------|--|--|--|
| Inlat m  |                                                          | Outlet pressure     |          |            |          |                    |       |                    |       |                    |       |  |  |  |
| Inlet pr | essure                                                   | 11 kPa / 1          | 10 mbarg | 15 kPa / 1 | 50 mbarg | 20 kPa / 200 mbarg |       | 25 kPa / 250 mbarg |       | 30 kPa / 300 mbarg |       |  |  |  |
| MPa      | barg                                                     | Stm <sup>3</sup> /h | Scfh     | Stm³/h     | Scfh     | Stm³/h             | Scfh  | Stm³/h             | Scfh  | Stm³/h             | Scfh  |  |  |  |
| 0.05     | 0.5                                                      | 73                  | 2600     | 76         | 2700     | 81                 | 2900  | 77                 | 2800  | 74                 | 2700  |  |  |  |
| 0.10     | 1.0                                                      | 149                 | 5300     | 152        | 5400     | 156                | 5600  | 157                | 5600  | 158                | 5600  |  |  |  |
| 0.20     | 2.0                                                      | 296                 | 10500    | 290        | 10300    | 282                | 10000 | 288                | 10200 | 294                | 10400 |  |  |  |
| 0.30     | 3.0                                                      | 419                 | 14800    | 418        | 14800    | 417                | 14800 | 415                | 14700 | 414                | 14700 |  |  |  |
| 0.40     | 4.0                                                      | 441                 | 15600    | 498        | 17600    | 570                | 20200 | 547                | 19400 | 525                | 18600 |  |  |  |
| 0.50     | 5.0                                                      | 418                 | 14800    | 484        | 17100    | 567                | 20100 | 605                | 21400 | 642                | 22700 |  |  |  |
| 0.60     | 6.0                                                      | 395                 | 14000    | 471        | 16700    | 565                | 20000 | 662                | 23400 | 759                | 26900 |  |  |  |
| Cg = 21  | 3 K1=                                                    | 95                  |          |            |          |                    |       |                    |       |                    |       |  |  |  |

Table 20 Dival SQD1 MP flow rate with outlet pressure from 11 kPa [110 mbarg] to 30 kPa [300 mbarg]

**Note:** Recommended max flow rate are considering multiple factors such as: extend the regulator's life, mitigate the erosion/vibrations for high velocity and to minimize the noise emission. **Remark:** all capacity stated are considering a stand alone regulator. In case of incorporated accessories a reduction of flow shall be considered.



## Dival SQD2 - DN 2" [50 mm]

From 2 kPa [20 mbarg] to 30 kPa [300 mbarg]

| Dival S  | Dival SQD2 - (accuracy 10% ; AC10 according to EN334) |                 |          |           |          |                     |          |            |           |                    |       |  |  |  |
|----------|-------------------------------------------------------|-----------------|----------|-----------|----------|---------------------|----------|------------|-----------|--------------------|-------|--|--|--|
| lulat nu |                                                       | Outlet pressure |          |           |          |                     |          |            |           |                    |       |  |  |  |
| Inlet pr | essure                                                | 2 kPa / 2       | 20 mbarg | 5 kPa / 5 | 50 mbarg | 10 kPa / 1          | 00 mbarg | 20 kPa / 2 | 200 mbarg | 30 kPa / 300 mbarg |       |  |  |  |
| MPa      | barg                                                  | Stm³/h          | Scfh     | Stm³/h    | Scfh     | Stm <sup>3</sup> /h | Scfh     | Stm³/h     | Scfh      | Stm³/h             | Scfh  |  |  |  |
| 0.05     | 0.5                                                   | 105             | 3800     | 135       | 4800     | 135                 | 4800     | 130        | 4600      | 153                | 5500  |  |  |  |
| 0.10     | 1.0                                                   | 84              | 3000     | 206       | 7300     | 235                 | 8300     | 250        | 8900      | 320                | 11300 |  |  |  |
| 0.20     | 2.0                                                   | 648             | 22900    | 454       | 16100    | 444                 | 15700    | 463        | 16400     | 601                | 21300 |  |  |  |
| 0.30     | 3.0                                                   | 508             | 18000    | 812       | 28700    | 688                 | 24300    | 668        | 23600     | 778                | 27500 |  |  |  |
| 0.40     | 4.0                                                   | 557             | 19700    | 976       | 34500    | 921                 | 32600    | 876        | 31000     | 1051               | 37200 |  |  |  |
| 0.50     | 5.0                                                   | 629             | 22300    | 1228      | 43400    | 1159                | 41000    | 1164       | 41200     | 1253               | 44300 |  |  |  |
| 0.60     | 6.0                                                   | 700             | 24800    | 1480      | 52300    | 1396                | 49300    | 1451       | 51300     | 1455               | 51400 |  |  |  |
| Cg = 39  | 96 K1=                                                | - 98            |          |           |          |                     |          |            |           |                    |       |  |  |  |

Table 21 Dival SQD2 flow rate with outlet pressure from 2 kPa [20 mbarg] to 30 kPa [300 mbarg]

## Dival SQD6 - DN 2"x3" [50x80 mm]

From 2 kPa [20 mbarg] to 30 kPa [300 mbarg]

| Dival SQD6 - (accuracy 10% ; AC10 according to EN334) |      |                  |       |                  |       |                    |        |                    |       |                     |        |
|-------------------------------------------------------|------|------------------|-------|------------------|-------|--------------------|--------|--------------------|-------|---------------------|--------|
| Inlet pressure                                        |      | Outlet pressure  |       |                  |       |                    |        |                    |       |                     |        |
|                                                       |      | 2 kPa / 20 mbarg |       | 5 kPa / 50 mbarg |       | 10 kPa / 100 mbarg |        | 20 kPa / 200 mbarg |       | 30 kPa / 300 mbarg  |        |
| MPa                                                   | barg | Stm³/h           | Scfh  | Stm³/h           | Scfh  | Stm³/h             | Scfh   | Stm³/h             | Scfh  | Stm <sup>3</sup> /h | Scfh   |
| 0.05                                                  | 0.5  | 312              | 11100 | 280              | 9900  | 292                | 10400  | 285                | 10100 | 272                 | 9700   |
| 0.10                                                  | 1.0  | 604              | 21400 | 439              | 15600 | 459                | 16300  | 519                | 18400 | 609                 | 21600  |
| 0.20                                                  | 2.0  | 636              | 22500 | 988              | 34900 | 898                | 31800  | 963                | 34100 | 1173                | 41500  |
| 0.30                                                  | 3.0  | 602              | 21300 | 1585             | 56000 | 1395               | 49300  | 1393               | 49200 | 1652                | 58400  |
| 0.40                                                  | 4.0  | 567              | 20100 | 2182             | 77100 | 1892               | 66900  | 1822               | 64400 | 2131                | 75300  |
| 0.50                                                  | 5.0  | 515              | 18200 | 1975             | 69800 | 2536               | 89600  | 2253               | 79600 | 2651                | 93700  |
| 0.60                                                  | 6.0  | 462              | 16400 | 1769             | 62500 | 3180               | 112300 | 2683               | 94800 | 3170                | 112000 |
| Cg = 930 K1 = 98                                      |      |                  |       |                  |       |                    |        |                    |       |                     |        |

Table 22 Dival SQD6 flow rate with outlet pressure from 2 kPa [20 mbarg] to 30 kPa [300 mbarg]

**Note:** Recommended max flow rate are considering multiple factors such as: extend the regulator's life, mitigate the erosion/vibrations for high velocity and to minimize the noise emission. **Remark:** all capacity stated are considering a stand alone regulator. In case of incorporated accessories a reduction of flow shall be considered.



#### TB0026ENG



The data are not binding. We reserve the right to make changes without prior notice.

sqd\_technicalbrochure\_ENG\_revB

www.fiorentini.com