

Trias

Régulateur de gaz moyenne basse pression

Pietro Fiorentini S.p.A.

Via E. Fermi, 8/10 | 36057 Arcugnano, Italie | +39 0444 968 511 sales@fiorentini.com

Les données ne sont pas contractuelles. Nous nous réservons le droit de procéder à des modifications sans préavis.

trias_technicalbrochure_FRA_revB

www.fiorentini.com

Qui sommes-nous?

Nous sommes une entreprise internationale, spécialisée dans la conception et la fabrication de solutions technologiquement avancées pour les systèmes de traitement, transport et distribution du gaz naturel.

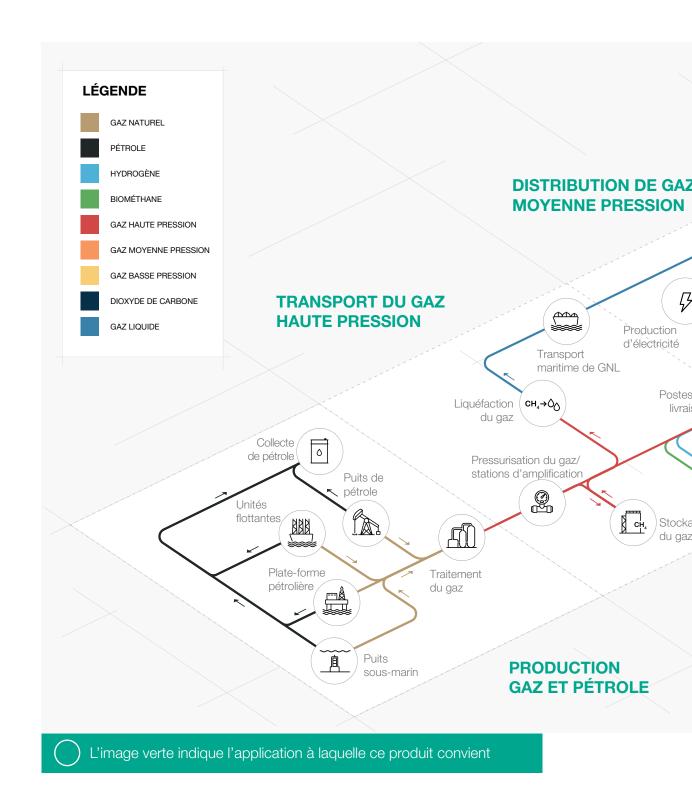
Nous sommes le partenaire idéal des opérateurs du secteur pétrolier et gazier, avec une offre commerciale qui couvre toute la filière d'approvisionnement en gaz naturel.

Nous sommes en constante évolution, afin de répondre aux exigences les plus élevées de nos clients tant en termes de qualité que de fiabilité.

Notre objectif est d'avoir une longueur d'avance sur la concurrence, grâce à des technologies sur mesure et un programme d'assistance après-vente qui se distingue toujours par son haut niveau de professionnalisme.

Avantages de Pietro Fiorentini

Assistance technique localisée


Expérience depuis 1940

Présente dans plus de 100 pays

Domaine d'application

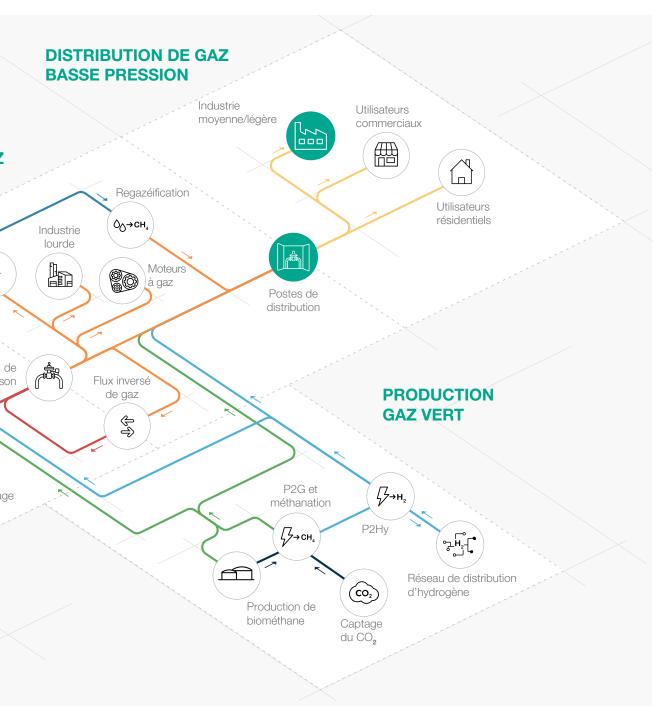


Figure 1 Plan des domaines d'application

Introduction

Le **Trias** de Pietro Fiorentini est un régulateur de pression de gaz à **levier** commandé par une membrane et un ressort régulé contrastant.

Principalement utilisé pour les réseaux de distribution de gaz naturel à moyenne et basse pression, ainsi que pour les applications commerciales et industrielles.

Il doit être utilisé avec des gaz non corrosifs préalablement filtrés.

Il est classé selon la norme européenne EN 334 comme Fail Open.

Trias est **Prêt pour l'hydrogène** pour le mélange NG-H2.

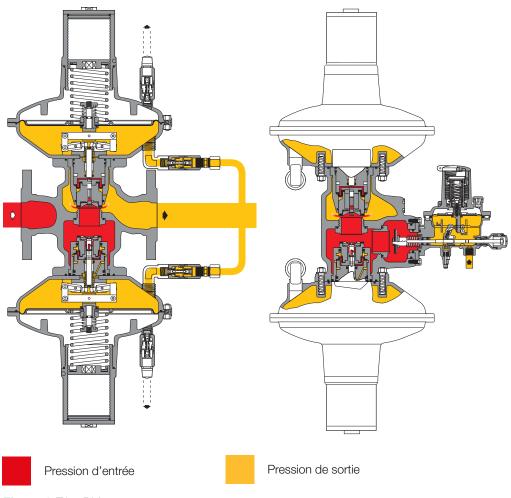


Figure 2 Trias BM

Caractéristiques et plages d'étalonnage

Le **Trias** est un dispositif à levier pour moyenne et basse pression, avec un **système** d'équilibrage dynamique unique qui assure une rangeability exceptionnelle ainsi qu'un contrôle de la pression de sortie extrêmement précis.

Un régulateur de pression équilibré est un régulateur de pression dont la précision de la pression de sortie n'est affectée ni par la fluctuation de la pression d'entrée ni par le débit pendant son fonctionnement. Par conséquent, un régulateur de pression équilibré peut avoir un seul orifice pour toutes les conditions de fonctionnement de pression et de débit.

Ce régulateur convient aux gaz non corrosifs préalablement filtrés et aux réseaux de distribution ainsi qu'aux applications industrielles à forte charge.

Sa conception vraiment top entry permet une maintenance facile des pièces directement sur le terrain, sans retirer le corps de la tuyauterie.

Le réglage du point de consigne du régulateur est actionné par un ressort situé dans la chambre supérieure.

Les régulateurs de pression Trias intègrent le concept de régulateur actif et de double dispositif de protection contre les surpressions dans le même corps.

- Trias BM: régulateur actif plus monitor et clapet de sécurité incorporés.
- Trias BB: régulateur actif plus doubles clapets de sécurité incorporés.

Avantages compétitifs de **Trias**

Type équilibré

Fonctionnement à basse pression différentielle

Haute précision

Obturateur et siège du régulateur en Fail Open

Token IRV

Haute rangeability

Top Entry

Maintenance facile

Dimensions compactes

Compatible avec le biométhane et avec les mélanges avec 20 % d'hydrogène.

Possibilité de compatibilité avec des mélanges à plus forte teneur sur demande

Caractéristiques

Caractéristiques	Valeurs
Pression nominale* (PS¹ / DP²)	jusqu'à 1,7 MPa jusqu'à 17 barg
Température ambiante* (TS1)	de -20 °C à +60 °C de -4 °F à +140 °F
Température d'entrée de gaz*	de -20 °C à +60 °C de -4 °F à +140 °F
Pression d'entrée (MAOP / p _{umax} ¹)	de 0,012 à 1,7 MPa de 0,12 à 17 barg
Plage de pression en aval (Wd1)	de 1,2 à 400 kPa de 12 à 4000 mbarg
Accessoires disponibles	aucun. Configurations prédéfinies
Pression différentielle opérationnelle minimale (Δp_{\min}^{-1})	0,01 MPa 0,1 barg
Classe de précision (AC1)	jusqu'à 5
Classe de pression de verrouillage (SG¹)	jusqu'à 20
Taille nominale (DN ^{1,2})	DN 40 1" 1/2 ; DN 50 2"
Connexions	Classe 150 RF ou RTJ conformément à ASME B16,5 et PN16 conformément à ISO 7005

⁽¹⁾ conformément à la norme EN334

^(°) conformément à la norme ISO 23555-1 (°) REMARQUE : Des caractéristiques fonctionnelles différentes ou des plages de température étendues sont disponibles sur demande. La plage de température indiquée est le maximum pour lequel les performances complètes de l'équipement, y compris la précision, sont garanties. Le produit peut avoir des plages de pression et de température différentes selon la version et/ou les accessoires installés.

Matériaux et homologations

Partie	Matériau
Corps	Fonte ductile sphéroïdale GS 400 - 18 ISO 1083
Couvercle	Aluminium moulé sous pression
Siège	Laiton
Membrane	Toile caoutchoutée
Joints toriques	Caoutchouc nitrile
Raccords de compression	Selon la norme DIN 2353, en acier au carbone zingué.

REMARQUE : Les matériaux indiqués ci-dessus se réfèrent aux modèles standards. Différents matériaux peuvent être fournis selon les besoins spécifiques.

Tableau 2 Matériaux

Normes de construction et homologations

Les régulateurs **Trias** sont conçus selon la norme européenne EN 334. Les régulateurs réagissent en ouverture (Fail Open) conformément à la norme EN 334.

Le produit est certifié conforme à la Directive européenne 2014/68/UE (DESP). Classe de fuite : étanchéité totale, meilleure que la classe VIII conformément à ANSI/FCI 70-3.

EN 334

DESP-CE

Gammes de ressorts et têtes de commande

Plages de pression des têtes de contrôle									
		Tête de contrôle BP	Tête de contrôle MP	Tête de contrôle T.195	Table à ressort lien internet				
Modèle	DN	kPa mbar	kPa mbar	kPa mbar					
Trias	1" 1/2 - 2"	1.6 ÷ 12.0 16 ÷ 120	11 ÷ 32 110 ÷ 320	30 ÷ 400 300 ÷ 4000	<u>TT 635</u>				

Tableau 3 Plage d'étalonnage des têtes de contrôle

Lien général aux tableaux d'étalonnage : APPUYER ICI ou utiliser le code QR :

Pression de fonctionnement maximale admissible

Pression nominale (p _s conformément à la norme EN334)								
Version	Со	rps	Clapet de sécurité					
version	MPa	barg	MPa	barg				
Corps en fonte PN16	1.60	16	2,00	20				
Corps en fonte n° 150	1,70	17	2,00	20				

Tableau 5 Pression nominale pour corps et clapet de sécurité

Pression nominale (p _s conformément à la norme EN334)								
	Tête de contrôle							
Parties	BP/	MP	T.195					
	MPa	barg	MPa	barg				
Couvercle	0,80	8	1,6	16				
Membrane	0,06	0,6	0,80	8				
Diaphragme max. Δp	0,04	0,4	0,53	5,3				

Tableau 6 Pression nominale des têtes de contrôle

MAOP Pression de fonctionnement maximale admissible (p _{umax} conformément à EN334)									
			Tête de	contrôle					
	Version	BP/	MP	T.195					
		MPa	barg	MPa	barg				
AVEC / SANS MARQUE CE	PN16 (tous matériaux du corps) + SSV	1,00	10*	1,6	16				
AVEC / MARQ	Corps en fonte n° 150 + SSV	1,00	10*	1,70	17				
*Version	*Version Trias B/M limite 8 bar / 0,8 MPa								

Tableau 7 MAOP Pression de fonctionnement maximale admissible avec/sans marque CE

Versions

Trias BM

L'option Trias BM offre un régulateur avec un régulateur monitor supplémentaire incorporé. Le régulateur monitor est un régulateur de secours qui prend le relais si, pour une raison quelconque, le régulateur actif tombe en panne et permet à la pression en aval d'augmenter jusqu'à ce qu'elle atteigne la pression de consigne du monitor. Ce régulateur de secours (monitor) est monté directement sur le corps du régulateur principal.

Les deux régulateurs de pression utilisent donc le même corps de vanne, mais ils sont contrôlés par deux mécanismes de commande indépendants (têtes de commande, obturateur et arbre, etc.). Les caractéristiques de fonctionnement du monitor sont les mêmes que celles du régulateur.

En outre, comme deuxième niveau de protection, le Trias est équipé d'un clapet de sécurité intégré qui, en cas de défaillance du système actif et du monitor, ferme l'alimentation en gaz dans les deux secondes qui suivent l'événement de surpression.

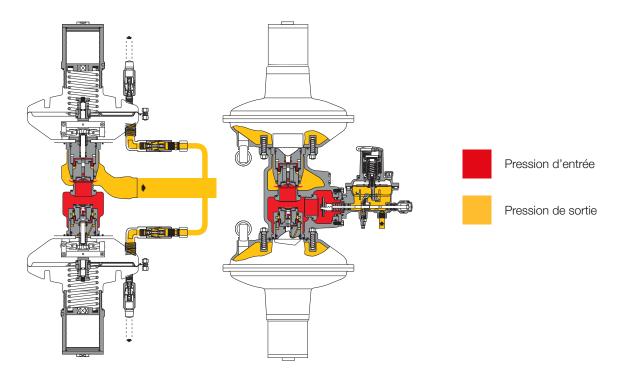


Figure 3 Trias BM avec monitor et clapet de sécurité

Trias BB

L'option Trias BB offre un régulateur avec un **double clapet de fermeture** pour une couche de sécurité supplémentaire intégrée dans le même corps.

Les deux clapets de sécurité utilisent le même corps de vanne, mais ils sont contrôlés par deux mécanismes de commande indépendants (pressostat, obturateur et arbre, etc.). En cas de défaillance du premier clapet de sécurité, le second, généralement réglé à un niveau légèrement supérieur au premier, ferme l'alimentation en gaz dans les deux secondes qui suivent l'événement de surpression.

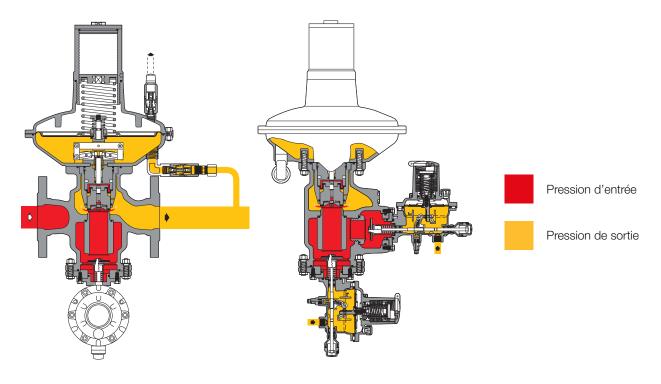


Figure 4 Trias BB avec double clapet de sécurité

Clapet de sécurité LA

Les deux versions BM | BB de Trias sont dotées d'un **clapet de sécurité LA incorporé** qui est installé pendant le processus de fabrication.

Les caractéristiques principales de cet appareil sont :

Fermeture en cas de surpression (OPSO)

Dimensions compactes

Fermeture en cas de sous-pression (UPSO)

Maintenance facile

By-pass interne

Option de déclenchement à distance

Bouton-poussoir pour test de déclenchement

Option fin de course

Pressostats types et plages								
Type SSV		Fonctionne-	Plage	e Wh	Lien internet			
	Modèle	ment	kPa	mbarg	tableau des ressorts			
LA	BP	OPSO	3 - 18	30 - 180	TT 00014			
LA	DP	UPSO	0,6 - 6	6 - 60	<u>TT 00214</u>			
1. A	MP	OPSO	14 - 45	140 - 450	TT 0001.4			
LA	IMP	UPSO	1 - 24	10 - 240	<u>TT 00214</u>			
1. A	TD	OPSO	25 - 550	250 - 5 500	TT 0001.4			
LA	TR	UPSO	10 - 350	100 - 3 500	<u>TT 00214</u>			

Tableau 8 Tableau des paramètres

Poids et dimensions

Trias BM

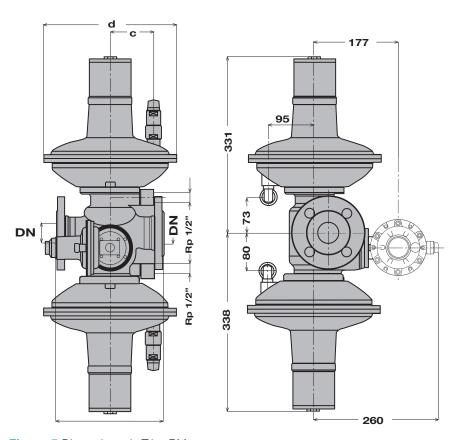


Figure 5 Dimensions de Trias BM

Poids et dir	Poids et dimensions (pour d'autres raccordements, prière de contacter le représentant Pietro Fiorentini le plus proche)							
Taille (DN)	- [mm]	4	0	5	0			
Taille (DN)	- pouces	1"	1/2	2))			
		[mm]	pouces	[mm]	pouces			
S		222	8,7"	254	10,0"			
BP/MP	d	275	10,8"	275	10,8"			
DP/IVIP	С	90	3,5"	90	3,5"			
T.195	d	195	7,7"	195	7,7"			
1.193	С	60	2,4"	60	2,4"			
Raccords d	le tuyaux	Øe 10 x Øi 8 (dimension impériale sur demande)						
Poids		Kg	lbs	Kg	lbs			
		27	59,5	30	66,1			

Tableau 9 Poids et dimensions

Trias BB

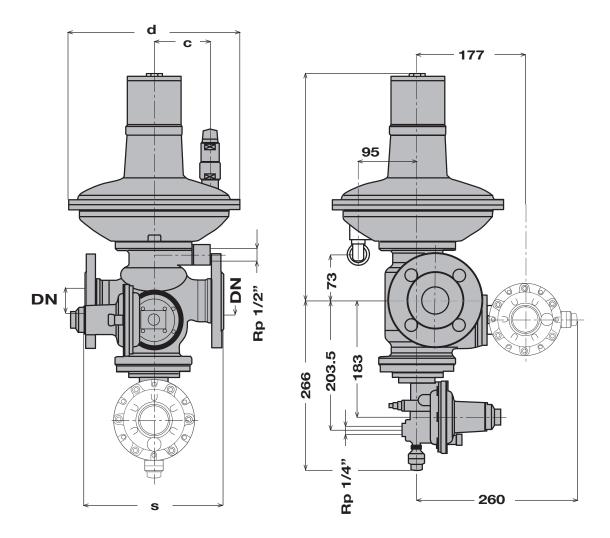


Figure 6 Dimensions de Trias BB

Poids et dimensions (pour d'autres raccordements, prière de contacter le représentant Pietro Fiorentini le plus proche)							
Taille (DN)	- [mm]	4	0	50			
Taille (DN)	- pouces	1"	1/2	2	,		
		[mm]	pouces	[mm]	pouces		
S		222	8,7"	254	10,0"		
BP/MP	d	275	10,8"	275	10,8"		
DF/IVIF	С	90	3,5"	90	3,5"		
T.195	d	195	7,7"	195	7,7"		
1.195	С	60	2,4"	60	2,4"		
Raccords d	e tuyaux	Øe 10 x Øi 8 (dimension impériale sur demande)					
Poids		Kg	lbs	Kg	lbs		
		20	44,1	33	72,8		

Tableau 10 Poids et dimensions

Dimensionnement et Cg

En général, le choix d'un régulateur se fonde sur le calcul du débit déterminé par l'utilisation de formules utilisant les coefficients de débit (Cg) et le facteur de forme (K1) comme indiqué par la norme EN 334. Les tailles sont disponibles par le biais du programme de dimensionnement en ligne de Pietro Fiorentini.

Coefficient de débit									
Taille nominale	BP	MP	T.195	BP	MP	T.195			
Taille nominale		40 50							
Pouces		1" 1/2			2"				
Cg Trias BB	562	562	562	590	590	590			
Cg Trias BM	556 556 556			576	576	576			
K1	93,5	93,5	93,5	93,5	93,5	93,5			

Tableau 11 Coefficient de débit

APPUYER ICI ou utiliser le code QR pour le dimensionnement :

Remarque: Si vous ne disposez pas des informations d'identification appropriées, n'hésitez pas à contacter le représentant Pietro Fiorentini le plus proche.

En général, le dimensionnement en ligne prend en compte plusieurs variables lorsque le régulateur est installé dans un système, ce qui permet une approche meilleure et multi-perspective du dimensionnement.

Pour différents gaz et pour le gaz naturel avec une densité relative différente autre que 0,61 (par rapport à l'air), il faut appliquer les coefficients de correction de la formule suivante.

$$F_c = \sqrt{\frac{175,8}{S \times (273,16 + T)}}$$
 $F_c = \sqrt{\frac{316,44}{S \times (459,67 + T)}}$

S = densité relative (consulter Tableau 12)

T = température du gaz (°C)

S = densité relative (consulter Tableau 12)

T = température du gaz (°F)

Facteur de correction Fc									
Type de gaz	Densité relative S	Facteur de correction Fc							
Air	1,00	0,78							
Propane	1,53	0,63							
Butane	2,00	0,55							
Azote	0,97	0,79							
Oxygène	1,14	0,73							
Dioxyde de carbone	1,52	0,63							

Remarque : le tableau présente les facteurs de correction Fc valables pour les gaz, calculés à une température de 15 °C et à la densité relative déclarée.

Tableau 12 Facteur de correction Fc

Conversion du débit

 $Stm^3/h \times 0,94795 = Nm^3/h$

Tableau 13 Conversion du débit

Nm³/h conditions de référence :

T= 0 °C; P= 1 barg | T= 32 °F; P= 14.5 psig

Stm³/h conditions de référence :

T= 15 °C; P= 1 barg | T= 59 °F; P= 14.5 psig

ATTENTION:

En vue d'obtenir de meilleures performances, d'éviter un phénomène d'usure prématurée et de limiter les émissions de bruit, nous recommandons de vérifier la vitesse du gaz et sa conformité avec la pratique et les règlements locaux. La vitesse du gaz au niveau de la bride de sortie peut se calculer à l'aide de la formule suivante :

$$V = 345,92 \text{ x} - \frac{Q}{DN^2} \times \frac{1 - 0,002 \times Pd}{1 + Pd}$$

$$V = 0.0498 \times \frac{Q}{DN^2} \times \frac{14.504 - 0.002 \times Pd}{14.504 + Pd}$$

V = vitesse du gaz en m/s Q = débit nominal du gaz en Stm³/h DN = dimension nominale du régulateur en mm Pd = pression de sortie en barg

V = vitesse du gaz en m/s Q = débit nominal du gaz en Stf³/h DN = dimension nominale du régulateur en mm Pd = pression de sortie en psi

Tableaux de capacité de débit

Trias BP - DN 1"1/2

De 1.6 kPa [16 mbarg] à 12.0 kPa [120 mbarg]

Trias BP - (précision 10 % ; AC10 selon EN334)											
Pres	sion		Pression de sortie								
d'en	trée	2 kPa / 2	20 mbarg	2,5 kPa/	25 mbarg	4 kPa / 4	10 mbarg	6 kPa / 6	0 mbarg	8,5 kPa/	85 mbarg
MPa	barg	Stm ³ /h	stf ³ /h	Stm ³ /h	stf ³ /h	Stm ³ /h	stf ³ /h	Stm³/h	stf ³ /h	Stm ³ /h	stf ³ /h
0,05	0,5	300	10600	301	10700	306	10900	314	11100	315	11200
0,10	1,0	549	19400	549	19400	549	19400	529	18700	499	17700
0,20	2,0	618	21900	629	22300	662	23400	721	25500	783	27700
0,30	3,0	618	21900	629	22300	661	23400	728	25800	819	29000
0.50	5,0	646	22900	652	23100	670	23700	807	28500	995	35200
1,00	10,0	644	22800	649	23000	667	23600	803	28400	990	35000
Cg = 56	Cg = 562 K1= 91.5										

Tableau 14 Débit de Trias BP avec pression de sortie de 2 kPa [20 mbarg] à 8,5 kPa [85 mbarg]

Trias BP - DN 2"

de 1.6 kPa [16 mbarg] à 12.0 kPa [120 mbarg]

Pres	sion	Pression de sortie												
d'entrée		2 kPa / 2	0 mbarg	2,5 kPa /	²⁵ mbarg 4 kPa / 40 mbarg		0 mbarg	6 kPa / 60 mbarg		8,5 kPa / 85 mbarg				
MPa	barg	Stm ³ /h	stf ³ /h	Stm ³ /h	stf ³ /h	Stm³/h	stf³/h	Stm ³ /h	stf ³ /h	Stm ³ /h	stf ³ /h			
0,05	0,5	350	12400	355	12600	370	13100	388	13800	389	13800			
0,10	1,0	599	21200	599	21200	599	21200	599	21200	603	21300			
0,20	2,0	998	35300	1006	35600	1031	36500	1067	37700	1108	39200			
0,30	3,0	996	35200	1005	35500	1030	36400	1066	37700	1118	39500			
0.50	5,0	994	35100	1003	35500	1028	36300	1064	37600	1116	39500			
1,00	10,0	990	35000	998	35300	1023	36200	1059	37400	1111	39300			

Tableau 15 Débit de Trias BP avec pression de sortie de 2 kPa [20 mbarg] à 8,5 kPa [85 mbarg]

Remarques : Le débit maximal recommandé tient compte de plusieurs exigences telles que : prolonger la durée de vie du régulateur, atténuer l'érosion/les vibrations en cas de vitesse élevée et minimiser les émissions sonores.

Trias MP - DN 1"1/2

De 11 kPa [110 mbarg] à 32 kPa [320 mbarg]

Trias M	Trias MP - (précision 10 % ; AC10 selon EN334)														
Pres	Pression d'entrée		Pression de sortie												
d'en			11 kPa / 110 mbarg		15 kPa / 150 mbarg		20 kPa / 200 mbarg		25 kPa / 250 mbarg		30 kPa / 300 mbarg				
MPa	barg	Stm ³ /h	stf ³ /h												
0,05	0,5	304	10800	320	11300	299	10600	279	9900	258	9200				
0,10	1,0	499	17700	529	18700	512	18100	494	17500	477	16900				
0,20	2,0	794	28100	818	28900	812	28700	806	28500	801	28300				
0,30	3,0	875	30900	897	31700	926	32700	956	33800	985	34800				
0.50	5,0	995	35200	895	31700	924	32700	954	33700	983	34800				
1,00	10,0	990	35000	891	31500	920	32500	950	33600	979	34600				
Cg = 56	62 K1=	91.5													

Tableau 16 Débit de Trias MP avec pression de sortie de 11 kPa [110 mbarg] à 30 kPa [300 mbarg]

Trias MP - DN 2"

De 11 kPa [110 mbarg] à 32 kPa [320 mbarg]

Pres	Pression		Pression de sortie																			
d'entrée		11 kPa / 110 mbarg		15 kPa / 150 mbarg		20 kPa / 200 mbarg		25 kPa / 250 mbarg		30 kPa / 300 mbarg												
MPa	barg	Stm ³ /h	stf ³ /h	Stm ³ /h	stf ³ /h	Stm ³ /h	stf ³ /h	Stm³/h	stf ³ /h	Stm ³ /h	stf ³ /h											
0,05	0,5	361	12800	350	12400	335	11900	320	11300	306	10900											
0,10	1,0	611	21600	599	21200	585	20700	570	20200	555	19600											
0,20	2,0	1136	40200	998	35300	1056	37300	1115	39400	1174	41500											
0,30	3,0	1174	41500	1196	42300	1225	43300	1255	44400	1284	45400											
0.50	5,0	1171	41400	1194	42200	1223	43200	1252	44300	1282	45300											
1,00	10,0	1166	41200	1287	45500	1346	47600	1404	49600	1462	51700											
Cg = 59	90 K1=	91.5									Cg = 590 K1 = 91.5											

Tableau 17 Débit de Trias MP avec pression de sortie de 11 kPa [110 mbarg] à 30 kPa [300 mbarg]

Remarques: Le débit maximal recommandé tient compte de plusieurs exigences telles que : prolonger la durée de vie du régulateur, atténuer l'érosion/les vibrations en cas de vitesse élevée et minimiser les émissions sonores.

Trias T.195 - DN 1"1/2

De 30 kPa [300 mbarg] à 0.4 MPa [4 barg]

Trias TR - (précision 10 % ; AC10 selon EN334)															
Pres	Pression d'entrée		Pression de sortie												
d'en			50 kPa / 500 mbarg		0,1 MPa / 1 barg		0,2 kPa / 2 barg		0,3 kPa / 3 barg		/ 4 barg				
MPa	barg	Stm ³ /h	stf ³ /h	Stm³/h	stf ³ /h	Stm ³ /h	stf ³ /h	Stm ³ /h	stf ³ /h	Stm ³ /h	stf ³ /h				
0,05	0,5	-	-	-	-	-	-	-	-	-	-				
0,10	1,0	420	14 900	-	-	-	-	-	-	-	-				
0,20	2,0	898	31800	799	28300	-	-	-	-	-	-				
0,30	3,0	997	35300	1197	42300	899	31800	-	-	-	-				
0.50	5,0	1194	42200	1493	52800	1694	59900	1497	52900	1199	42400				
1,00	10,0	1189	42000	1487	52600	1984	70100	2483	87700	2783	98300				
1,50	15,0	1184	41900	1481	52300	1976	69800	2472	87300	2969	104900				
Cg = 56	62 K1=	91.5													

Tableau 18 Débit de Trias T.195 avec pression de sortie de 50 kPa [500 mbarg] à 400 kPa [4000 mbarg]

Trias T.195 - DN 2"

De 30 kPa [300 mbarg] à 0.4 MPa [4 barg]

Pression d'entrée		Pression de sortie												
		50 kPa / 500 mbarg		0,1 MPa	/ 1 barg	0,2 kPa / 2 barg		0,3 kPa / 3 barg		0,4 MPa / 4 barg				
MPa	barg	Stm ³ /h	stf ³ /h	Stm³/h	stf ³ /h	Stm ³ /h	stf ³ /h	Stm ³ /h	stf ³ /h	Stm ³ /h	stf ³ /h			
0,05	0,5	-	-	-	-	-	-	-	-	-	-			
0,10	1,0	550	19500	-	-	-	-	-	-	-	-			
0,20	2,0	998	35300	899	31800	-	-	-	-	-	-			
0,30	3,0	1296	45800	1397	49400	1099	38900	-	-	-	-			
0.50	5,0	1393	49200	1792	63300	1894	66900	1896	67000	1399	49400			
1,00	10,0	1387	49000	1982	70000	3175	112200	3476	122800	2982	105300			
1,50	15,0	1381	48800	1974	69800	3161	111700	3461	122300	3464	122400			

Tableau 19 Débit de Trias T.195 avec pression de sortie de 50 kPa [500 mbarg] à 400 kPa [4000 mbarg]

Remarques: Le débit maximal recommandé tient compte de plusieurs exigences telles que : prolonger la durée de vie du régulateur, atténuer l'érosion/les vibrations en cas de vitesse élevée et minimiser les émissions sonores.

L'orientation client

L'approche centrée sur le client est une façon de gérer votre entreprise en mettant en place une expérience client parfaite à chaque étape du processus. Pietro Fiorentini, l'une des principales entreprises italiennes ouvertes à l'international, mise sur la qualité de ses produits et services.

La stratégie principale consiste à créer une relation stable et à long terme, en accordant la première place aux besoins du client. La gestion Lean et l'orientation client sont le point de départ pour améliorer et maintenir le plus haut niveau d'expérience client.

Assistance

L'une des principales priorités de Pietro Fiorentini est de soutenir le client dans toutes les phases de développement du projet, lors de l'installation, la mise en service et l'exploitation. Pietro Fiorentini a mis au point un système de gestion des interventions (SGI) hautement normalisé, qui contribue à faciliter l'ensemble du processus et à placer le client au premier plan de chaque décision prise dans le cadre de notre processus de fabrication ou de développement d'un produit afin de contribuer à l'amélioration du produit et du service. Grâce à notre modèle commercial SGI, de nombreux services sont disponibles à distance, ce qui permet d'éviter les longues périodes d'attente, d'améliorer le service et d'éviter les dépenses inutiles.

Formation

Pietro Fiorentini propose des services de formation disponibles pour les opérateurs expérimentés et les nouveaux utilisateurs. La formation est offerte pour tous les niveaux de nos clients et peut inclure un ou tous les éléments suivants : dimensionnement de l'équipement, application, installation, fonctionnement, maintenance et elle est préparée en fonction du niveau d'utilisation et du besoin du client.

Gestion de la Relation Client (CRM)

Le service et l'attention accordée à nos clients sont l'une des principales missions et la vision de Pietro Fiorentini. Pour cette raison, Pietro Fiorentini a amélioré le système de gestion de la relation client. Cela nous permet de suivre toutes les opportunités et demandes de nos clients en un seul point d'information et de coordonner les informations, ce qui nous permet d'offrir un meilleur service au client.

Durabilité

Chez Pietro Fiorentini, nous croyons en un monde capable de s'améliorer grâce à des technologies et des solutions qui peuvent façonner un avenir plus durable. C'est pourquoi le respect des personnes, de la société et de l'environnement est la pierre angulaire de notre stratégie.

Notre engagement pour le monde de demain

Si, par le passé, nous nous sommes limités à fournir des produits, des systèmes et des services pour le secteur du pétrole et du gaz, nous voulons aujourd'hui élargir nos horizons et créer des technologies et des solutions pour un monde numérique et durable. Nous mettons particulièrement l'accent sur les projets d'énergie renouvelable afin de tirer le meilleur parti des ressources de notre planète et de créer un avenir dans lequel les jeunes générations pourront grandir et prospérer.

Le temps est venu de comprendre comment et pourquoi nous fonctionnons maintenant.

TB0025FRA

Les données ne sont pas contractuelles. Nous nous réservons le droit de procéder à des modifications sans préavis.

trias_technicalbrochure_FRA_revB

www.fiorentini.com