

Staflux Mini

High Medium Pressure Gas Regulator

Pietro Fiorentini S.p.A.

Via E.Fermi, 8/10 | 36057 Arcugnano, Italy | +39 0444 968 511 sales@fiorentini.com

The data are not binding. We reserve the right to make changes without prior notice.

stafluxmini_technicalbrochure_ENG_revB

www.fiorentini.com

Who we are

We are a global organization specialized in designing and manufacturing technologically advanced solutions for natural gas treatment, transmission and distribution systems.

We are the ideal partner for operators in the Oil & Gas sector, with a business offer that goes across the whole natural gas chain.

We are in constant evolution to meet our customers' highest expectations in terms of quality and reliability.

Our aim is to be a step ahead of the competition, with customized technologies and an after-sale service program undertaken with the highest grade of professionalism.

Pietro Fiorentini advantages

Localised technical support

Experience since 1940

We operate in over 100 countries

Area of Application

Figure 1 Area of Application Map

Introduction

Staflux Mini is a **direct-operated pressure regulator** controlled by a diaphragm and contrasting regulated counter pressure action.

Mainly used for CNG trailers, high-pressure transmission systems and for medium pressure natural gas distribution networks, it can be used with previously filtered non-corrosive gases. According to the European Standard EN 334, it is classified as **Fail Close**.

Features and Calibration ranges

Staflux Mini is a direct action device for high pressure, controlled by a diaphragm and contrasting regulated counter pressure action.

Staflux Mini is a balanced pressure regulator. This means that the controlled outlet pressure is not affected by variations in the inlet pressure and flow during its operation. Therefore a balanced regulator can have a single-size orifice for all pressure and flow conditions.

This regulator is also suitable for use with previously filtered, non corrosive gases. It is a **truly top entry design** which allows a **easy maintenance** of parts directly in the field **without removing the body from the pipework.**

Set point adjustment of the regulator is achieved via a three way / two valve unit used to load and unload the pressure in the top chamber.

A small capacity relief valve prevents set pressures at values beyond limits and, at the same time, protects the pressurised chamber from overpressure subsequent to high ambient temperatures.

Pressure in the top chamber creates the counter action similar to the one of a spring in more conventional regulators.

Figure 3 Threaded Staflux Mini

Figure 4 Flanged Staflux Mini

Staflux Mini competitive advantages

Compact and simple design

Operates with high differential pressure

Does not require gas pre-heating

Balanced type

Top Entry

Easy maintenance

Н

Built-in filter

Available with specific versions for full Hydrogen or blending

Features

Features	Values					
Design pressure*	up to 25 MPa up to 250 barg					
Ambient temperature*	from -20 °C to +60 °C from -4 °F to +140 °F					
Inlet gas temperature range*	from -20 °C to +60 °C from -4 °F to +140 °F					
Inlet pressure range bpu (MAOP)	from 0.5 to 25 MPa from 5 to 250 barg					
Range of downstream pressure Wd	from 0.4 to 7.5 MPa from 4 to 75 barg					
Available Accessories	built-in filter					
Minimum differential pressure	0.1 MPa 1 barg					
Accuracy class AC	up to 10 (depending on working conditions)					
Lock-up pressure class SG	10 (depending on working conditions)					
Nominal dimensions DN	DN 25 / 1"					
Connections*	Class 1500 RF according to ANSI B16.5 or threaded NPT					
(*) REMARK: Different functional features and/or extended temperature ranges available on re-						

including accuracy, are fulfilled. Standard product may have a narrower range.

Table 1 Features

Materials and Approvals

Part	Material					
Body	ASTM A350 LF2 – Carbon Steel					
Cover	ASTM A350 LF2 – Carbon Steel					
Plug	Stainless steel AISI 416					
Seat	Stainless steel AISI 416					
Diaphragm	Rubber : NBR/PVC					
Sealing ring	Nitrile rubber					
Stem	AISI 416					
REMARK: The materials indicated above refer to the standard models. Different materials can be provided according to specific needs.						

Table 2 Materials

Construction Standards and Approvals

Staflux Mini regulator is designed according to the European standard EN 334. The regulator reacts in closure (Fail Close) according to EN 334. Leakage class: bubble tight, better than VIII according to ANSI/FCI 70-3.

Springs ranges and control heads

Tuno	Model Operation		Rang	Spring Table		
туре	Woder	Operation	MPa	barg	web link	
Relief Valve	VS/FI	Manual	0.4 - 7.5	4 - 75	<u>TT 673</u>	

Table 3 Settings table

General link to the calibration tables: **PRESS HERE** or use the QR code:

Weights and Dimensions

Figure 5 Staflux Mini dimensions

Weights and Dimensions (for other connections please contact your closest Pietro Fiorentini representative)					
	Threaded Connections [mm] inches	Flanged Connections [mm] inches			
Size (DN)	25 1"	25 1"			
S	115 4.53"	235 9.25"			
А	62 2.44"	75 2.95"			
В	226 8.90"	226 8.90"			
С	77 3.03"	77 3.03"			
D	126 4.96"	126 4.96"			
E	100 3.94"	100 3.94"			
Н	270 10.63"	300 11.81"			
Weight	kg lbs	kg lbs			
	12 26	20 44			

Table 4 Weights and Dimensions

Sizing and Cg

In general, the choice of a regulator is made based on the calculation of the flow rate determined by the use of formulae using the flow rate coefficients (Cg) and the form factor (K1) as indicated by the EN 334 standard.

Flow rate coefficient						
Nominal size	25					
Inches	1"					
Cg	59					
K1	95,2					

Table 5 Flow rate coefficient

For sizing **PRESS HERE** or use the QR code:

Note: In case you do not have the proper credentials to access, feel free to contact your closest Pietro Fiorentini representative.

In general the online sizing considers multiple variables as the regulator is installed in a system, enabling a better and multiperspective approach to the sizing.

For different gases, and for natural gas with a different relative density other than 0.61 (compared to air), the correction coefficients from the following formula shall be applied.

$$F_c = \sqrt{\frac{175,8}{S \times (273,16 + T)}}$$

S = relative density (refere to table 6) T = gas temperature (°C)

Correction Factor Fc						
Gas Type	Relative Density S	Correction Factor Fc				
Air	1.00	0.78				
Propane	1.53	0.63				
Butane	2.00	0.55				
Nitrogen	0.97	0.79				
Oxygen	1.14	0.73				
Carbon Dioxide	1.52	0.63				

Note: the table shows the Fc correction factors valid for Gas, calculated at a temperature of 15°C and at the declared relative density.

Table 6 Correction factor Fc

Flow rate conversion

 $Stm^{3}/h \ge 0.94795 = Nm^{3}/h$

 Nm^{3}/h reference conditions T= 0 °C; P= 1 barg Stm³/h reference conditions T= 15 °C; P= 1 barg

 Table 7 Flow rate conversion

CAUTION:

In order to get optimal performance, to avoid premature erosion phenomena and to limit noise emissions, it is recommended to check that the gas speed at the outlet flange does not exceed the values of the graph below. The gas speed at the outlet flange may be calculated by means of the following formula:

Ini	et	Outlet pressure									
pres	sure	0.4 MPa	4 barg	0.5 MPa 5 barg 1 MPa 10 barg		10 barg	1.5 MPa 15 barg		2 MPa 20 barg		
MPa	barg	Stm³/h	Scfh	Stm³/h	Scfh	Stm³/h	Scfh	Stm³/h	Scfh	Stm³/h	Scfh
0.5	5	120	4 238	-	-	-	-	-	-	-	-
1.0	10	270	9 535	300	10 594	-	-	-	-	-	-
2.0	20	270	9 535	320	11 301	570	20 129	460	16 245	-	-
4.0	40	270	9 535	320	11 301	590	20 836	850	30 017	1 200	42 378
6.0	60	270	9 535	320	11 301	590	20 836	850	30 017	1 200	42 378
8.0	80	270	9 535	320	11 301	590	20 836	850	30 017	1 200	42 378
10.0	100	270	9 535	320	11 301	590	20 836	850	30 017	1 200	42 378
12.0	120	270	9 535	320	11 301	590	20 836	850	30 017	1 200	42 378
14.0	140	270	9 535	320	11 301	590	20 836	850	30 017	1 200	42 378
16.0	160	270	9 535	320	11 301	590	20 836	850	30 017	1 200	42 378
20.0	200	270	9 535	320	11 301	590	20 836	850	30 017	1 200	42 378
22.0	220	270	9 535	320	11 301	590	20 836	850	30 017	1 200	42 378
25.0	250	270	9 535	320	11 301	590	20 836	850	30 017	1 200	42 378

Table 8 Staflux Mini flow rate with outlet pressure from 0.4 MPa | 4 barg up to 2.0 MPa | 20 barg

Staflux Mini flow rate (Accuracy 10%; AC10 according to EN334) **Outlet pressure** Inlet pressure 3 MPa | 30 bar 4 MPa | 40 bar 5 MPa | 50 bar 6 MPa | 60 bar 7 MPa | 70 bar MPa barg Stm³/h Scfh Stm³/h Scfh Stm³/h Scfh Stm³/h Scfh Stm³/h Scfh 0.5 5 -----_ ----1.0 10 ----------2.0 20 ----------4.0 40 900 31 783 ---_ ---_ 6.0 60 1 650 58 269 1 480 52 266 1 1 3 0 39 906 --_ _ 8.0 80 1 650 58 269 2 180 76 986 2 040 72 042 1 770 62 507 1 330 46 969 10.0 100 1 650 58 269 2710 95 703 2 600 91 818 2 360 83 343 2 180 76 986 12.0 120 1 650 58 269 76 986 2 7 1 0 95 703 3 240 3 150 2 180 114 420 111 241 140 14.0 1 650 58 269 2 180 76 986 2710 95 703 3 2 4 0 114 420 3 770 133 136 16.0 160 1 650 58 269 2 180 76 986 2710 95 703 3 2 4 0 114 420 3 770 133 136 20.0 200 1 650 58 269 2 180 76 986 2710 95 703 3 2 4 0 114 420 3 770 133 136 22.0 220 1 650 58 269 2 180 76 986 2710 95 703 3 2 4 0 114 420 3 770 133 136 25.0 250 1 650 58 269 2 180 76 986 2710 95 703 3 240 114 420 3 770 133 136 CG = 59

Table 9 Staflux Mini flow rate with outlet pressure from 3.0 MPa | 30 barg up to 7.0 MPa | 70 barg

TB0001ENG

The data are not binding. We reserve the right to make changes without prior notice.

stafluxmini_technicalbrochure_ENG_revB

www.fiorentini.com