

Modus Slim 2

DISCLAIMER

All rights reserved. No part of this publication may be reproduced, distributed, translated into any language, or transmitted by any electronic or mechanical means, including photocopying, recording, or any other means of storage and retrieval, for other purpose other than the purchaser's personal use, without prior written permission of the Manufacturer.

The Manufacturer is by no means liable for the consequences of operations not performed in compliance with this manual.

Table of Contents

1 Pi	roduct Features	
1.1	Conversion Coefficient	4
1.2	Energy Calculation	5
2 Ce	ertifications	
2.1	2014/34/UE ATEX directive	6
2.2	2014/32/UE MID directive	6
3 Sa	afety Installation Requirements	
4 R:	attorios	R R
	Deplecement	•
7.1 E 11		۰۵ ۱۸
ວ ປະ	SEF S MENU	
5.1		
5.2	Events	14
5.3		14
6 Ir	nstallation	
6.1	Clamps	
6.2	Metrological Unlock Button	
6.3	Metrological sealing	
6.4	Non-Metrological sealings	
6.5	Factory reset	
_ 6.6	Maintenance	
7 Te	echnical Specifications	
8 E>	x Safety Parameters	
	•	

1 Product Features

Modus Slim 2 is a type 1 gas volume converter, with integrated data-logger and GSM / GPRS modem. It has a PTZ conversion channel through which the impulses from the volume meter, the pressure and the temperature of the gas are acquired and the compressibility factor Z and the conversion coefficient C are calculated at the reference thermodynamic conditions. The heat of combustion Hs is also calculated.

MODUS SLIM2 has been certified for installation in environments with a potentially explosive atmosphere according to the type of protection:

The device complies with EN60079-0 and EN60079-11 standards for use at ambient temperatures between -25 ° C and + 60 ° C according to the EU-type examination certificate **TÜV IT 21 ATEX 034 X**.

The pressure and temperature values are acquired through two sensors which are an integral part of the equipment.

An optical interface compliant with CEI EN 62056-21 is available for local communication with the equipment.

MODUS SLIM2 has one pulse input for dedicated for meter and one digital input for anti-tamper. Both inputs must be connected to voltage-free contacts.

Volume corrector information can be viewed on a liquid crystal display. Two digital outputs are available for repeating the volumes at the measurement conditions and at the reference conditions

For non-metrological applications, the equipment is identified as MLog SLIM2: all safety features remain unchanged.

1.1 Conversion Coefficient

The PTZ corrector performs the acquisition of the pulses emitted by the counter meter and calculates the equivalent cubic meters base conditions according to the formula:

Symbol	Represented quantity	Unit of measure
V _b	Volume at base conditions	m³
V _m	Volume at measurement conditions	m³
Ρ	Absolute pressure at measurement conditions	bar
P _b	Absolute pressure at base conditions	bar
Т	Temperature at measurement conditions	К
T _b	Temperature at measurement conditions	К
Z	Compressibility factor at measurement conditions	-
Z _b	Compressibility factor at base conditions	-
С	Conversion factor	-

The compressibility factor takes into account the deviation of behaviour between real and ideal gas. The calculation method can be configured between the followings:

- UNI EN ISO 12213-2 (AGA8-DC92) •
- UNI EN ISO 12213-3 (SGERG88) •
- AGA-NX19

The conversion factor is calculated according the formula specified into standard UNI EN ISO 12405-1.

1.2 Energy Calculation

The device calculates the energy of gas flown according the standard UNI EN 12405-2:2012

Symbols	Represented quantity	Measuring unit					
V _b	Volume at base conditions	m³					
E	Energy	1					
Hs	Superior calorific value	J/m³					

If the compressibility factor configured is AGA8-DC92, the Superior Calorific Value is calculated according the standard UNI EN ISO 6976:2008, otherwise must be configured by user.

The data-logger processes the metric data according to UNI / TS 11291-3 / 4 and makes them available to the central acquisition system (SAC) via GSM / GPRS data connection. An optical serial port is available for local communication.

The human-machine interface consists of a liquid crystal display and a keyboard through which it is possible to navigate through the data presentation menus.

2 Certifications

2.1 2014/34/UE ATEX directive

Modus Slim 2 is a very low consumption volume corrector, particularly suitable for all those uses where it is not possible to use the mains as a power source.

The equipment was designed for the monitoring of gas distribution systems and certified, according to Directive **2014/34 / EU (ATEX)** both as intrinsically safe equipment for use in applications in potentially explosive atmospheres.

$\overleftarrow{(x)}$ II 1 G Ex ia IIA T3 Ga Tamb = -25°C ÷ +60 °C TÜV IT 21 ATEX 034 X

<u>Risk of Explosion</u>: The installation must be carried out in compliance with the prescriptions contained in this manual

2.2 2014/32/UE MID directive

Modus Slim 2 has been approved MID according EN12405-1:2005+A2:2010. Marking shown below.

IT-024-21-MI002-2213

3 Safety Installation Requirements

In the case of use in areas with danger of explosion, it must be verified that the type of equipment provided is suitable for the classification of the area and any flammable substances present.

The essential safety requirements against the risk of explosion in classified areas are established by Directive 2014/34 / EU of the European Parliament and of the Council of 26 February 2014 (as regards equipment) and 1999/92 / EC of 16 December 1999 (as regards the plants).

The criteria for the classification of areas with risk of explosion are given by the EN60079-10 standard. The technical requirements of electrical systems in classified areas are given by the EN60079-14 standard.

The following table shows the legend of the marking for use in a hazardous area:

II 1 G	Equipment for surface systems with the presence of gas or vapours, category 1 suitable for zone 0 and with redundancy for zones 1 and 2
Ex ia	Intrinsically safe equipment, category ia
IIA	Equipment of group IIA suitable for substances (gases) of groups IIA.
Ga	Equipment Ga protection level
Т3	Equipment temperature class (maximum surface temperature)
CE	Conformity marking to applicable European directives
(Ex)	Marking of conformity to directive 2014/34 / EU and related technical standards
TÜV IT 21 ATEX 034 X	Number of the EU-type examination certificate. X indicates that there are particular conditions of use which are indicated in the manual with safety instructions.
1370	Number of the Notified Body (Bureau Veritas) which carries out the surveillance of the production system.
Tamb	Ambient operating temperature of the equipment

WARNING: DANGER OF ELECTROSTATIC DISCHARGE CLEAN WITH A WET CLOTH OR ANTISTATIC PRODUCTS.

In order to prevent the accumulation of electrostatic charges on the equipment, appropriate procedures must be adopted during installation, maintenance and use

4 Batteries

MODUS SLIM 2 uses two lithium battery packs that guarantee high operating autonomy.

BATTERY CODE	FUNCTION	BATTERY TYPE	FEATURE
LE8-BP	CPU power supply	Lithium	Standard
HP7-BP ¹	Modem power supply	Lithium	Standard

The battery packs have been approved by the Notified Body which issued the ATEX type certificate and it is therefore absolutely mandatory to use only the model provided.

DANGER OF EXPLOSION

Do not short-circuit the terminals of the battery pack. **Do not** try to open the casing. Keep away from heat sources. **Don't** try to recharge.

DO NOT connect the HP-7 battery pack directly to the BATT2 connector.

Battery packs must always be replaced in the absence of an explosive atmosphere. Check the operating conditions with suitable instruments before proceeding.

Exhausted batteries contain substances that are hazardous to the environment and are subject to mandatory separate collection: dispose of in accordance with the laws in force to allow for recycling. CER code 160605.

4.1 Replacement

Replacing a battery pack involves removing the NON-metrological hardware seals.

To minimize the risk of data loss it is advisable to connect a new charged CPU battery before removing the old one.

To replace a battery, simply remove the exhausted pack and replace it with a new one.

¹ It is possible to equip the **HP6-BP** equivalent battery as an alternative to the standard **HP7-BP**.

Figure 1: MODUS SLIM 2 equipped with HP7-BP

After replacing a battery, it is necessary to realign the remaining range indicators.

5 User's Menu

Under normal operating conditions **MODUS SLIM 2** keeps the display off to save energy. To access the main menu, press the button الـ

It is possible to navigate in the menu using the keys \downarrow (enter), \downarrow (scroll), **ESC**.

The button \downarrow allows you to access the submenus if available.

The button **ESC** allows you to return to the previous menu.

The button \downarrow allows you to scroll through the menu items.

The menu can only be used to view quantities already configured in the equipment or to force predefined actions. It is not possible to edit the configurations set.

The Flowmeter menu can show in the first line one or both of the following special characters listed below

• **\sigma:** Metrical sealing temporary unlocked

The metrological release button was pressed. The symbol is shown as long as the display remains lit.

• **β:** Volume conversion stopped

Volume conversion is inhibited. The reasons can be different: pressure out of range, temperature out of range, wrong gas parameters etc.

FLOWMETER ,

$\mathbf{\Lambda}$	Vb
$\mathbf{\Lambda}$	Vb

- **√** Vm
- **√** Ve
- ↓ Energy

Instant. Val.	Ļ	Pgas	AŁ
	$\mathbf{\Lambda}$	Tgas	AŁ
	$\mathbf{\Psi}$	Z	Gä
	$\mathbf{\Lambda}$	Zb/Z	Сс
	$\mathbf{\Lambda}$	c	Vc
	$\mathbf{\Lambda}$	Qb	Fle
	$\mathbf{\Lambda}$	Qm	Fle
Parameters	Ļ	C02	С
	$\mathbf{\Lambda}$	H2	С
	$\mathbf{\Lambda}$	DRel	De
	$\mathbf{\Lambda}$	PCS	Hi
	$\mathbf{\Lambda}$	Temp. Rifer.	Re
	$\mathbf{\Lambda}$	Тсь	PC
	$\mathbf{\Lambda}$	Tpcs	Re
	$\mathbf{\Lambda}$	Press. Rif.	Re
	$\mathbf{\Lambda}$	N2	С
	$\mathbf{\Lambda}$	со	С
	\mathbf{V}	CH4	С
	$\mathbf{\Lambda}$	C2	С
	\mathbf{V}	С3	С
	$\mathbf{\Lambda}$	H2O	С
	\mathbf{V}	H2S	С
	\mathbf{V}	02	С
	$\mathbf{\Lambda}$	iC4	С
	$\mathbf{\Lambda}$	nC4	С
	$\mathbf{\Lambda}$	iC5	а
	$\mathbf{\Lambda}$	nC5	а
	\mathbf{V}	nC6	а
	\mathbf{V}	nC7	С
	\mathbf{V}	nC8	а
	$\mathbf{\Lambda}$	nC9	а
	\mathbf{V}	nC10	a
	$\mathbf{\Psi}$	Не	а
	$\mathbf{\Lambda}$	Ar	а

. -	
Volume	Counter at base conditions
Volume	Counter at measurement conditions
Volume conversi Energy c	Counter at measurement conditions when ion is stopped counter
Absolute	pressure at the measurement conditions
Absolute	e temperature at measurement conditions
Gas com	pression factor at the measurement conditions
Compres	ssion factor ratio
Volume	conversion factor
Flow at l	basic conditions
Flow at a	the measurement conditions
Current	CO2 concentration
Current	H2 concentration
Density	relative to air
Higher (Caloric Power
Reference	ce temperature
PCS con	bustion temperature
Reference	ce temperature of the PCS measurement
Reference	ce pressure
Current	N2 (Nitrogen) concentration
Current	CO (carbon monoxide) concentration
Current	CH4 (Methane) concentration
Current	C2H6 (Ethane) concentration
Current	C3H8 (Propane) concentration
Current	H2O (water) concentration
Current	H2S (Hydrogen sulfide) concentration
Current	02 (Oxygen) concentration
Current	Isobutan concentration
Current	Neobutan concentration
Current	Isopentane concentration
Current	neopentane concentration
Current	Neo-C6 concentration
Current	Neo-C7 concentration
Current	Neo-C8 concentration
Current	Neo-C9 concentration
Current	Neo-C10 concentration
Current	helium concentration
Current	Argon concentration

$\mathbf{\Lambda}$	State	Diagn ل	•		See Table 2
		↓ Alarm	S		Display of any active alarms
		🗸 Resid	ual Battery		Percentage of residual EVCD battery
		↓ Conta	t. Att.		Display of weight and pulse divider
$\mathbf{\Lambda}$	System	S/N C	onv.		Display of the flowmeter serial number
		↓ S/NP	ress.		Display of the serial number of the pressure transducer
		V S/NT	emp.		Display of the serial number of the temperature transducer
		↓ Vers.	FW		Firmware version
		↓ Crc FV	N		Display of the flowmeter firmware CRC
		Vers.	Bootloader		Display of bootloader firmware revision
		Crc. B	ootloader		Display of the bootloader firmware CRC
		Z calc	ul.		Calculation formula of the compressibility factor Z
		C calc	ul.		Calculation formula of the conversion coefficient C
$\mathbf{\Lambda}$	Events Buffer	Numb ل	er of events	Event List	Number and list of events with time stamp
		🗸 Absol	ute Count.		Absolute Event counter
		↓ Reset			See chapter "Machine reset"
$\mathbf{\Lambda}$	Date & Time	Ļ			Display of the current date and time

Table 1: Flowmeter menu

	actory condition. The machine is NOT operational.
CALIBRATION N	Ion-operating machine update functions can be performed
NORMAL S	Standard operating condition
MAINTENANCE T	he equipment is operational but does not store data or events

Table 2: Possible states for the flowmeter section

DATALOGGER ,J

$\mathbf{\Psi}$	Id (PDR)					Point of Delivery identifier
\mathbf{V}	Billing	Ļ	Current	Ļ	ID PT	Tariff plan identifier
				¥	Vb	Cubic meters counter at standard conditions
				↓ ↓	Vb F1	Cubic meters counter at standard conditions F1
				Ť	VDF2 VbF3	Cubic meters counter at standard conditions F2 Cubic meters counter at standard conditions F3
				Ŷ	Vm	Cubic meters counter at the measurement conditions
				¥	Vm F1	Cubic meters counter at the measurement conditions F1
				<u>т</u>	Vm F2 Vm F2	Cubic meters counter at the measurement conditions F2
				Ť	Vme	Cubic meters counter in error
				¥	Vme F1	Cubic meters counter in error F1
				\downarrow	Vme F2 Vme F3	Cubic meters counter in error F2 Cubic meters counter in error F3
		لہ	Previous	L ا	ID PT	Tariff plan identifier
				$\mathbf{\Lambda}$	Reason	Reason for period closure - see table 6
				$\mathbf{\Lambda}$	Vb	Cubic meters counter at standard conditions
				$\mathbf{\Lambda}$	Vb F1	Cubic meters counter at standard conditions F1
				$\mathbf{\Lambda}$	Vb F2	Cubic meters counter at standard conditions F2
				$\mathbf{\Lambda}$	Vb F3	Cubic meters counter at standard conditions F3
				$\mathbf{\Lambda}$	Vm	Cubic meters counter at the measurement conditions
				$\mathbf{\Lambda}$	Vm F1	Cubic meters counter at the measurement conditions F1
				$\mathbf{\Lambda}$	Vm F2	Cubic meters counter at the measurement conditions F2
				$\mathbf{\Lambda}$	Vm F3	Cubic meters counter at the measurement conditions F3
				$\mathbf{\Lambda}$	Vme	Cubic meters counter in error
				$\mathbf{\Lambda}$	Vme F1	Cubic meters counter in error F1
				$\mathbf{\Lambda}$	Vme F2	Cubic meters counter in error F2
				$\mathbf{\Lambda}$	Vme F3	Cubic meters counter in error F3
\mathbf{V}	Meter ID	لہ				Gas Meter serial number
$\mathbf{\Lambda}$	Modem	لہ	Call SAC			Force call to the configured remote management center
		$\mathbf{\Lambda}$	SMS Test SAC			Force sending test SMS
		\mathbf{A}	Turn on GSM Dati			Force power on modem in GSM data mode
		$\mathbf{\Lambda}$	Turn on GPRS			Force modem power on in GPRS data mode
		\downarrow	Gprs DCE IP GSM Field			Displays the last IP assigned by the network Displays the intensity of the GSM field
		$\mathbf{\Lambda}$	Local echo			Enable modem echo on local serial port
		\mathbf{V}	Last connection			Date and time of the last connection occurred
			Message SAC	لہ		
				$\mathbf{\Lambda}$	P0	Text message from SAC profile 0
				$\mathbf{\Lambda}$	P1	Text message from SAC profile 1
				$\mathbf{\Lambda}$	P2	Text message from SAC profile 2
				$\mathbf{\Psi}$	P3	Text message from SAC profile 3
				$\mathbf{\Lambda}$	P4	Text message from SAC profile 4
↓	SW REV. BLD CCA					Non-Metrological Firmware Revision
. ↓	Service	Ļ	Local	۔	Modbus	Communication protocol on local port
				لہ	CTR	
				ESC		Leave setup
		لہ	Remote	Ъ	Modbus	Communication protocol on remote port
				₊	CTR	
				FSC		Leave Setun
				200		

5.1 Diagnostic

The diagnostic information shown on the display reports the status of each diagnostic bit in hexadecimal format. Each bit equal to 1 indicates a specific anomaly.

1 2 3 4 5 6 7	8 9 1 C	$\begin{array}{c c} 1 & 1 \\ 1 & 2 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 2 7 8 9 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 4 5 6 7 8	2 3 3 3 9 0 1 2
0-4 0-F		0	U	0-2	0-3	0 - F	0 - E
				DISPLAT			
FUNCTION	BIT	FUNCTION	BIT	FUNCTION	BIT	FUNCTION	BI
GENERAL ALARM	1	RESERVED	9	RESERVED	17	CONVERSION STOPPED	D 25
STATUS NOT OPERATIONAL	2	RESERVED	10	RESERVED	18	UNALIGNED CLOCK	26
PRESSURE ERROR	3	RESERVED	11	RESERVED	19	EVENTS QUEUE FULL	27
TEMP. ERROR	4	RESERVED	12	RESERVED	20	TAMPER ALARM	28
ERR. CAICULATION Z	5	RESERVED	13	RESERVED	21	GENERIC ALARM	29
ERR. CONFIGURATION	6	RESERVED	14	Q ALARM	22	EVENTS QUEUE 90%	30
PRESSURE UNCALIBRATED	7	RESERVED	15	PRESSURE OUT OF R	ANGE 23	LOW BATTERY	31
TEMP. UNCALIBRATED	8	RESERVED	16	TEMP. OUT OF RANG	E 24	RESERVED	32

Table 3: Flowmeter Diagnostic Section

5.2 Events

Ν	DISPLAY	DESCRIPTION	Ν	DISPLAY	DESCRIPTION
1	GENERIC	Generic Event	14	EVT. RESET	Event Queue Reset
2	OUT OF LIM S	Out of Limit Start	15	EVT. FULL	Event Queue Full
3	OUT OF LIM E	Out of Limit End	16	CONF BP	Changed Billing Period
4	OUT OF RANGE	Out of Range	17	START BP	Start New Billing Period
5	MOD PARAM	Modified CTR Object	18	CONF SW	New Firmware Downloaded
6	FAILURE	Generic Failure	19	START SW	New Firmware Active
7	NO SUPPLY	No 230V	20	REBOOT	Reboot/Attempt Fraud
8	LOW BATT	Low Battery	21	STATUS NORM	Status Changed to Normal
9	MOD DATA	Date and Time Mod.	22	STATUS UNCO	Status Changed to Unconfigured
10	CALC ERROR	Calculation Error	23	STATUS MNT	Status Changed to Maintenance
11	RESET MEM	Factory Reset	24	STOP CONV	Stop Conversion
12	BROK. SEAL	Unlocked Software Seal	25	BATT.REPL.	Battery Replaced
13	SYNC ERR.	Date or Time Error	26	MOD SECUR	Modified security parameter

Table 4:Events

5.3 End Of Billing

Code 1

Description

- Changed provider New contract
- 2 3 4 5 New user
- Changer distributor
- End of billing period
- 6 New billing period

Table 5: Reasons for closing billing period

6 Installation

It is not sufficient for a device to be intrinsically safe to be connected to associated equipment. It is necessary that a qualified technician or a body in charge proceed with the verification of the system and issue of suitable certification proving the compatibility between the electrical safety parameters possessed by both devices.

6.1 Clamps

A The replacement of the pressure or temperature transducer is not allowed.

A Opening the lid involves removing the metrological seals.

An example of connection is shown below: the connection of the pressure sensor cables depends on the sensor technology.

Figure 2: MODUS SLIM 2 clamps

MORS.	POS	FUNZIONE	COLORE CAVO
M1	1	ANALOG PRESSURE TRANSDUCER- IN+	PRESS-RED
M1	2	ANALOG PRESSURE TRANSDUCER-OUT+	PRESS-YELLOW
M1	3	ANALOG PRESSURE TRANSDUCER-OUT-	PRESS-WHITE
M1	4	ANALOG PRESSURE TRANSDUCER- IN-	PRESS-BLUE
M1	5	DIGITAL PRESSURE TRANSDUCER – GND	PRESS-WHITE
M1	6	DIGITAL PRESSURE TRANSDUCER – POWER SUPPLU	PRESS-BROWN
M1	7	DIGITAL PRESSURE TRANSDUCER – OUTPUT	PRESS-GREEN
M1	8	SCREEN	TEMP-BLACK
M1	9	PT1000 – NEGATIVE	TEMP-RED
M1	10	PT1000 – POSITIVE	TEMP-WHITE
M2	1	IMPULSIVE INPUT 2 - CLEAN CONTACT	
M2	2	IMPULSIVE INPUT 2 - CLEAN CONTACT/SCREEN	
M2	3	IMPULSIVE INPUT 1 - CLEAN CONTACT	
M2	4	IMPULSIVE INPUT 1 - CLEAN CONTACT/SCREEN	
M3	1	DIGITAL OUT 1 - PULSE REPEAT – COLLECTOR	
M3	2	DIGITAL OUT 1 - PULSE REPEAT – EMITTER	
M3	3	DIGITAL OUT 2 - PULSE REPEAT – COLLECTOR	
M3	4	DIGITAL OUT 2 - PULSE REPEAT - EMITTER	

Table 6:Description of available clamps

6.2 Metrological Unlock Button

The Metrological unlock button is accessed removing main cover, protected by Metrological seals. After pressing Metrological Unlock Button the software Metrological seals are unlocked and Metrological parameters can be modified. The software Metrological seals return to locked status when display switch off after 30 seconds of keyboard activity.

During the period the Metrological seals are unlocked the display shows symbol σ as first character of first line.

When the Metrological seal is unlocked the following parameters, can be modified:

- Vm Volume at measure conditions
- Vb Volume at base conditions
- Ve Volume in error conditions
- Energy
- Pulse configuration
- Device Status
- Erase Events Queue

Lock/Unlock Metrological seals and parameters modifications are registered into events queue.

Figure 3: Metrological Unlock Button

6.3 Metrological sealing

The metrological sealing is carried out by sealing which prevents the opening of the main cover. The sealing wire is inserted into the holes located in the upper part of the lid as shown in the following illustration.

Figure 4: Metrological sealing

6.4 Non-Metrological sealings

Two adhesive Non-Metrological sealings protect the battery cover as shown in the following figure 5.

Figure 5: Non-Metrological sealings

6.5 Factory reset

 $\underline{\wedge}$ The converter's reset involves the removal of the metrological seals.

Figure 6: Push buttons for Factory Reset

It is possible to restore both the flowmeter and the data logger to the original factory conditions (converter calibrated but not configured).

Reset procedure:

1. Disconnect the two battery packs;

2. Wait for 5 seconds;

3. Press buttons **PROG** and **ESC** and connect battery pack; keeping buttons pressed wait for display message **RESET CONFIG**;

4. Release buttons and wait for device to complete the reset procedure. At the end of reset the device will reboot.

PAY ATTENTION: do not remove batteries during reset.

6.6 Maintenance

All verification and / or maintenance operations must be carried out according to the criteria of the European standard EN60079-17.

7 Technical Specifications

MECHANICAL	MIN	TIP	MAX			
Casing material	Bayer Bayblend FR3000					
Casing Dimensions (L X H X P)	180x150x40 mm					
Pressure transducer - installed dimensions (L X H X P)	38 X 27 X 27 mm					
Pressure transducer - Headroom (L)	50 mm					
Pressure transducer - process connection	1/4" G Male					
Temperature transducer - thermal element dimensions (L X D)	6 X 50 mm					
Temperature transducer - Headroom(L)	50 mm					
IP protection		66				
ENVIRONMENT	MIN	TIP	MAX			
Ambient operating temperature range	-25°C		+60°C			
Operating gas temperature range with formula AGA8-DC92	-25°C		+60°C			
Operating gas temperature range with SGERG88 formula	-20°C		+60°C			
Operating gas temperature range with formula ACA-NY19	-25°C		+60°C			
Environmental classes	-25 C	M2/F2	+00 C			
	MTN		ΜΛΥ			
Nominal voltage LES PD HD6 PD HD7 PD	PILIN	261	MAA			
LEO DD conocity		10 Ab				
HD6 PD capacity		13 All				
		17 All				
	MTN	19 An	MAY			
PRESSURE TRANSDUCERS		TIP	MAX			
	0.8		1.5			
	0.8		2			
Pressure transducer working range (Bar) ²	0.8		10			
			20			
	6		80			
TEMPERATURE TRANSDUCERS						
Туре	PT1000 class A IEC/EN 60751					
IMPULSIVE INPUTS	MIN	TIP	MAX			
AVAILABLE			2			
Digital Inputs Type		Contact				
Frequency			3 Hz			
Electrical characteristics	See: Safety instru	ctions Nr. 09 of 10 [December 2013			
DIGITAL OUTPUTS	MIN	TIP	MAX			
Digital Outputs Type		Open collector				
AVAILABLE			4			
Electrical characteristics	See: Safety instructions Nr. 09 of 10 December 2013					
LOCAL OPTICAL INTERFACE						
Speed, data bits, parity, stop bits		9600,8, n,1				
COMMUNICATION						
Protocol	UNI TS 11291-3 (CTR)					
Communication vectors	GSM data, GSM SMS, GPRS					
Data link	Scheduled Call to the centre; configuration; missing data download, archive, date / time alignment.					
Firmware update	Via local port or remotely. Check CRC32					
FUNCTIONAL						
Calculation of conversion factor	UNI EN 12405-1					
	UNI EN ISO 12213-3 (SGERG-88)					
Calculation of compressibility	UNI EN I	SO 12213-2 (AGA8-	DC92)			
	AGA NX-19					
Energy calculation	UNI EN 12405-2					
Calculation of higher calorific value ³	UNI EN ISO 6976:2008					

 $^{^{\}rm 2}$ MID certified fields. Other fields are available without metric certification.

³ If the compressibility calculation is set according to AGA8-DC92.

8 **Ex Safety Parameters**

Digital Inputs										
Parameter	Uo	Io	Ро	Ui	Ii	Pi	Со	Lo	Ci	Li
Valore	6 Volt	6,5mA	10mW	N.A.	N.A.	N.A.	100µF	1H	N.A.	N.A.
Digital Outputs										
Parameter	Uo	Io	Ро	Ui	Ii	Pi	Со	Lo	Ci	Li
Valore	6 Volt	6,5mA	10mW	15V	N.A.	N.A.	100µF	1H	≈0	≈0
Input for Analog pressure sensor (1)										
Parameter	Uo	Io	Ро	Ui	Ii	Pi	Со	Lo	Ci	Li
Valore	6 Volt	151mA	227mW	N.A.	N.A.	N.A.	100µF	[:] 1mH	N.A.	N.A.
Input for digital pressure sensor (2)										
Parameter	Uo	Io	Ро	Ui	Ii	Pi	Со	Lo	Ci	Li
Valore	6 Volt	70mA	105mW	N.A.	N.A.	N.A.	100µF	1mH	N.A.	N.A.
Input for SPI / I2C digital sensor										
Parameter	Uo	Io	Ро	Ui	Ii	Pi	Со	Lo	Ci	Li
Valore	6 Volt	82mA	123mW	N.A.	N.A.	N.A.	100µF	1mH	N.A.	N.A.
Input for temperature Transducer										
Parameter	Uo	Io	Ро	Ui	Ii	Pi	Со	Lo	Ci	Li
Valore	6 Volt	26mA	39mW	N.A.	N.A.	N.A.	100µF	1mH	N.A.	N.A.

(1) The following transducer types can be connected to this channel:

STS TD GAS STS TM EX GEMS 563966 GEMS 564280 **TECLAB GSE-03 TECLAB TL01** TECLAB GSE/03/1 GSE-03 FAST FAST TL01 FAST GSE/03/1

Or any ATEX certified transducer with characteristic parameters compatible with the values indicated above.

(2) A transducer of the following type can be connected to this channel t: A 528 HUBA

Or any ATEX certified transducer with characteristic parameters compatible with the values indicated above.