

Classificazione e Campo di impiego

La VS/AM 58 è una valvola di sicurezza autoazionata.

Questa valvola va utilizzata in tutte le applicazioni in cui l'apertura rapida ed il riposizionamento affidabile dopo la chiusura sono essenziali.

Il design della **VS/AM 58** permette una manutenzione facile delle sue parti. La **VS/AM 58** ha un ampio range di regolazione grazie alla sostituzione delle molle.

Caratteristiche principali

- Disegno compatto
- Manutenzione facile
- Tempo di risposta rapido
- Alta precisione
- Bassi costi di operazione

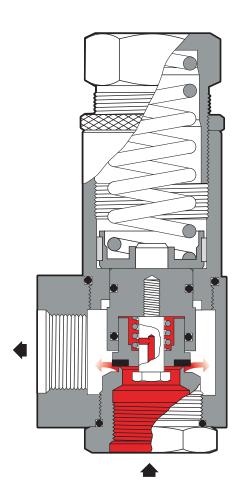


Fig.1

VS/AM 58 - Versione base

Pressione in entrata

CARATTERISTICHE

Caratteristiche Funzionali:*

■ Pressione massima in ingresso: 100 bar

Pressione di inizio apertura: ±2%

■ Temperatura ambiente minima: Fino a -20°C

Fino a + 60°C ■ Temperatura ambiente massima:

■ Temperatura del gas in ingresso: Fino a -20°C + 60°C

Caratteristiche Costruttive:

Connessioni filettate: 1" RP ISO, 1" NPT

Connessioni flangiate: Class 150, 300, 600 secondo EN1759-1

Materiali: **

Corpo: EN AW 6012-T651

Otturatore: X8CrNiS18-9 EN10088-3 (Aisi303)

+ Nitril Rubber or Viton

Sede valvola X8CrNiS18-9 EN10088-3 (Aisi303)

NOTA: * Caratteristiche funzionali diverse disponibili a richiesta.

^{**} I materiali sopra indicati si riferiscono ad esecuzioni standard. Materiali diversi potranno essere previsti per specifiche esigenze.

Dimensionamento della valvola di sfioro

In generale la scelta della valvola **VS/AM 58** si esegue sulla base del calcolo della portata determinata mediante l'uso delle formule e dei coefficienti di portata.

$$q = (0.9 \text{ Kc}) \bullet (394,9xc) \bullet P_1 A \bullet \sqrt{\frac{M}{Z_1 \bullet T_1}}$$
 Q= 23.661 $\frac{q}{M}$

Dove:

q = portata massima scaricata [kg/h]

c = coefficiente di espansione

p₁ = pressione di taratura (psf) più 10% in bar assoluti (p₀ [bar abs] = psf [barg] • 1,1+1,013)

A = attraversamento superficie minima [mm²] (vedere tabella 1)

Q = portata massima [Stm³/h]

M = peso molecolare del fluido [kg/kmol] (vedere tabella 2)

Z₁ = fattore di comprimibilità delle condizioni di scarico del fluido (= 1 se sconosciuto)

T₁ = temperatura del fluido all'ingresso della valvola in gradi Kelvin [K]

 $\mathbf{k} = \frac{\mathbf{C}\mathbf{p}}{\mathbf{C}\mathbf{v}}$ = coeficiente dell'equalizzazione isontopica

kc = coeficiente di eflusso

$$C = \sqrt{k(\frac{2}{k+1})^{\frac{k+1}{k-1}}}$$

Calcolo del coefficiente di flusso

Diametro nominale	
Millimetri	25
Pollici	1"
Diametro di passaggio minimo [mm]	23
Area minima di passaggio [mm²]	415,48
	tab. 1

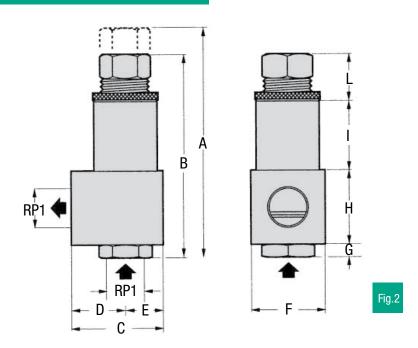
Peso molecolare e coefficiente di dilatazione

Tipologia di fluido	Massa Molecolare (kg/kmol)	Coefficiente espansione C
Anidride carbonica	44,01	2,637
Idrogeno	2,02	2,708
Metano	16,04	2,641
Gas naturale*	18,04	2,641
Azoto	28,02	2,704
Ossigeno	32,00	2,704
Propano	44,09	2,507
* Valore medio		Tab.2

Principio di funzionamento della valvola di sfioro

I principio di funzionamento della valvola di sfioro **VS/AM 58** si fonda sul confronto tra la spinta sul pistone derivante dalla pressione del gas da controllare e la spinta derivante dalla molla di taratura.

Ovviamente in questo confronto intervengono anche il peso dell'equipaggio mobile, le spinte statiche e quelle dinamiche residue sulla pastiglia armata.


Quando la spinta derivante dalla pressione del gas supera quella della molla, l'otturatore viene sollevato con conseguente scarico di una certa quantità di gas; in caso contrario l'otturatore viene liberato e chiude la sede valvola sotto la spinta della sola pressione del gas da controllare e non della molla di taratura. In questo modo vengono evitati danneggiamenti alla pastiglia armata per errate manovre del dado di regolazione della taratura.

Portata gas naturale (d= 0,61) in Nm3 /h														
Set-point in bar	Rottura bolla in bar	10	25	60	100	160	250	400	600	800	1000	2000	4000	5000
Sovrapressioni rispetto set-point in %														
2	2	8,5	13,5	19	19	19	25	38						
7	7	3	4,5	5,5	6	6	7	7	7,5	11	12			
14	14	2	4	5	6	6	6,5	6,5	7	7	7	10		
40	40	1	1	1,5	1,5	1,5	2	2	2	2	2	2	2	2
														Tab.3

La tabella fornisce i valori delle portate di scarico per varie sovrappressioni rispetto al set-point e per alcuni valori del set-point stesso. Per valori intermedi le portate possono essere desunte per interpolazione lineare.

CARATTERISTICHE

Dimensioni [mm]	
Millimetri	25
Pollici	1"
Α	188
В	155
С	75
D	45
E	30
F	60
G	10
н	60
I	59
L	26
	Tab.4

Pesi [kg]	
Rp/NPT	1,9
Ansi 150	3,9
Ansi 300 / 600	5,6
	Tab.5

www.fiorentini.com

I dati sono indicativi e non impegnativi. Ci riserviamo di apportare eventuali modifiche senza preavviso.

